Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists at NCI Generate Largest Data Set of Cancer-Related Genetic Variations

Published: Tuesday, July 30, 2013
Last Updated: Tuesday, July 30, 2013
Bookmark and Share
Scientists have generated a data set of cancer-specific genetic variations and are making these data available to the research community.

This will help cancer researchers better understand drug response and resistance to cancer treatments.

"To date, this is the largest database worldwide, containing 6 billion data points that connect drugs with genomic variants for the whole human genome across cell lines from nine tissues of origin, including breast, ovary, prostate, colon, lung, kidney, brain, blood and skin," said Yves Pommier, M.D., Ph.D., chief of the Laboratory of Molecular Pharmacology at the NCI in Bethesda, Md., in an interview. "We are making this data set public for the greater community to use and analyze.

"Opening this extensive data set to researchers will expand our knowledge and understanding of tumorigenesis [the process by which normal cells are transformed into cancer], as more and more cancer-related gene aberrations are discovered," Pommier added. "This comes at a great time, because genomic medicine is becoming a reality, and I am very hopeful this valuable information will change the way we use drugs for precision medicine."

Pommier and colleagues conducted whole-exome sequencing of the NCI-60 human cancer cell line panel, which is a collection of 60 human cancer cell lines, and generated a comprehensive list of cancer-specific genetic variations. Preliminary studies conducted by the researchers indicate that the extensive data set has the potential to dramatically enhance understanding of the relationships between specific cancer-related genetic variations and drug response, which will accelerate the drug development process.

The NCI-60 human cancer cell line panel is used extensively by cancer researchers to discover novel anti-cancer drugs. To conduct whole-exome sequencing, Pommier and his NCI team extracted DNA from the 60 different cell lines, which represent cancers of the lung, colon, brain, ovary, breast, prostate and kidney, as well as leukemia and melanoma, and cataloged the genetic coding variants for the entire human genome. The genetic variations identified were of two types: type I variants corresponding to variants found in the normal population, and type II variants, which are cancer-specific.

The researchers then used the Super Learner algorithm to predict the sensitivity of cells harboring type II variants to 103 anti-cancer drugs approved by the FDA and an additional 207 investigational new drugs. They were able to study the correlations between key cancer-related genes and clinically relevant anti-cancer drugs, and predict the outcome.

The data generated in this study provide means to identify new determinants of response and mechanisms of resistance to drugs, and offer opportunities to target genomic defects and overcome acquired resistance, according to Pommier. To enable this, the researchers are making these data available to all researchers via two database portals, called the CellMiner database and the Ingenuity systems database.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NCI Scientists Identify Targets for Melanoma Immunotherapy
Researchers have identified seven targets that could potentially be used to develop new immunotherapies for patients with metastatic melanoma.
Wednesday, September 11, 2013
MicroRNA Molecule May Serve as Biomarker
MicroRNA molecule called miR-7 decreased in highly metastatic cancer stem-like cells.
Monday, February 18, 2013
MicroRNA Molecule May Serve as Biomarker, Target for Brain Metastases in Breast Cancer Patients
Currently, most deaths from breast cancer are a result of metastatic disease.
Wednesday, February 06, 2013
Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!