Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists at NCI Generate Largest Data Set of Cancer-Related Genetic Variations

Published: Tuesday, July 30, 2013
Last Updated: Tuesday, July 30, 2013
Bookmark and Share
Scientists have generated a data set of cancer-specific genetic variations and are making these data available to the research community.

This will help cancer researchers better understand drug response and resistance to cancer treatments.

"To date, this is the largest database worldwide, containing 6 billion data points that connect drugs with genomic variants for the whole human genome across cell lines from nine tissues of origin, including breast, ovary, prostate, colon, lung, kidney, brain, blood and skin," said Yves Pommier, M.D., Ph.D., chief of the Laboratory of Molecular Pharmacology at the NCI in Bethesda, Md., in an interview. "We are making this data set public for the greater community to use and analyze.

"Opening this extensive data set to researchers will expand our knowledge and understanding of tumorigenesis [the process by which normal cells are transformed into cancer], as more and more cancer-related gene aberrations are discovered," Pommier added. "This comes at a great time, because genomic medicine is becoming a reality, and I am very hopeful this valuable information will change the way we use drugs for precision medicine."

Pommier and colleagues conducted whole-exome sequencing of the NCI-60 human cancer cell line panel, which is a collection of 60 human cancer cell lines, and generated a comprehensive list of cancer-specific genetic variations. Preliminary studies conducted by the researchers indicate that the extensive data set has the potential to dramatically enhance understanding of the relationships between specific cancer-related genetic variations and drug response, which will accelerate the drug development process.

The NCI-60 human cancer cell line panel is used extensively by cancer researchers to discover novel anti-cancer drugs. To conduct whole-exome sequencing, Pommier and his NCI team extracted DNA from the 60 different cell lines, which represent cancers of the lung, colon, brain, ovary, breast, prostate and kidney, as well as leukemia and melanoma, and cataloged the genetic coding variants for the entire human genome. The genetic variations identified were of two types: type I variants corresponding to variants found in the normal population, and type II variants, which are cancer-specific.

The researchers then used the Super Learner algorithm to predict the sensitivity of cells harboring type II variants to 103 anti-cancer drugs approved by the FDA and an additional 207 investigational new drugs. They were able to study the correlations between key cancer-related genes and clinically relevant anti-cancer drugs, and predict the outcome.

The data generated in this study provide means to identify new determinants of response and mechanisms of resistance to drugs, and offer opportunities to target genomic defects and overcome acquired resistance, according to Pommier. To enable this, the researchers are making these data available to all researchers via two database portals, called the CellMiner database and the Ingenuity systems database.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NCI Scientists Identify Targets for Melanoma Immunotherapy
Researchers have identified seven targets that could potentially be used to develop new immunotherapies for patients with metastatic melanoma.
Wednesday, September 11, 2013
MicroRNA Molecule May Serve as Biomarker
MicroRNA molecule called miR-7 decreased in highly metastatic cancer stem-like cells.
Monday, February 18, 2013
MicroRNA Molecule May Serve as Biomarker, Target for Brain Metastases in Breast Cancer Patients
Currently, most deaths from breast cancer are a result of metastatic disease.
Wednesday, February 06, 2013
Scientific News
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
UTSW Creates Nanoparticles That Target Lung Cancer Cells
Researchers at UTSW have developed a synthetic polymers that could deliver nucleic acid drugs while possessing enough structural diversity to discover cancer cell-specific nanoparticles.
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!