Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New 3-D Colonoscopy Eases Detection of Precancerous Lesions

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
New technology offers three-dimensional images, making it easier to detect precancerous lesions.

MIT researchers have developed a new endoscopy technology that could make it easier for doctors to detect precancerous lesions in the colon. Early detection of such lesions has been shown to reduce death rates from colorectal cancer, which kills about 50,000 people per year in the United States.

The new technique, known as photometric stereo endoscopy, can capture topographical images of the colon surface along with traditional two-dimensional images. Such images make it easier to see precancerous growths, including flatter lesions that traditional endoscopy usually misses, says Nicholas Durr, a research fellow in the Madrid-MIT M+Vision Consortium, a recently formed community of medical researchers in Boston and Madrid.

“In conventional colonoscopy screening, you look for these characteristic large polyps that grow into the lumen of the colon, which are relatively easy to see,” Durr says. “However, a lot of studies in the last few years have shown that more subtle, nonpolypoid lesions can also cause cancer.”

Durr is the senior author of a paper describing the new technology in the Journal of Biomedical Optics. Lead author of the paper is Vicente Parot, a research fellow in the M+Vision Consortium. Researchers from Massachusetts General Hospital (MGH) also participated in the project.

In the United States, colonoscopies are recommended beginning at age 50, and are credited with reducing the risk of death from colorectal cancer by about half. Traditional colonoscopy uses endoscopes with fiber-optic cameras to capture images.

Durr and his colleagues, seeking medical problems that could be solved with new optical technology, realized that there was a need to detect lesions that colonoscopy can miss. A technique called chromoendoscopy, in which a dye is sprayed in the colon to highlight topographical changes, offers better sensitivity but is not routinely used because it takes too long.

“Photometric stereo endoscopy can potentially provide similar contrast to chromoendoscopy,” Durr says. “And because it’s an all-optical technique, it can give the contrast at the push of a button.”

Originally developed as a computer vision technique, photometric stereo imaging can reproduce the topography of a surface by measuring the distances between multiple light sources and the surface. Those distances are used to calculate the slope of the surface relative to the light source, generating a representation of any bumps or other surface features.

However, the researchers had to modify the original technology for endoscopy because there is no way to know the precise distance between the tip of the endoscope and the surface of the colon. Because of this, the images generated during their first attempts contained distortions, particularly in locations where the surface height changes gradually.

To eliminate those distortions, the researchers developed a way to filter out spatial information from the smoothest surfaces. The resulting technology, which requires at least three light sources, does not calculate the exact height or depth of surface features but creates a visual representation that allows the colonoscopist to determine if there is a lesion or polyp.

“What is attractive about this technique for colonoscopy is that it provides an added dimension of diagnostic information, particularly about three-dimensional morphology on the surface of the colon,” says Nimmi Ramanujam, a professor of biological engineering at Duke University who was not part of the research team.

The researchers built two prototypes — one 35 millimeters in diameter, which would be too large to use for colonoscopy, and one 14 millimeters in diameter, the size of a typical colonoscope. In tests with an artificial silicon colon, the researchers found that both prototypes could create 3-D representations of polyps and flatter lesions.

The new technology should be easily incorporated into newer endoscopes, Durr says. “A lot of existing colonoscopes already have multiple light sources,” he says. “From a hardware perspective all they need to do is alternate the lights and then update their software to process this photometric data.”

The researchers plan to test the technology in human patients in clinical trials at MGH and the Hospital Clinico San Carlos in Madrid. They are also working on additional computer algorithms that could help to automate the process of identifying polyps and lesions from the topographical information generated by the new system.

The research was funded by the Comunidad de Madrid through the Madrid-MIT M+Vision Consortium.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!