Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Blocking Key Enzyme in Cancer Cells Could Lead to New Therapy

Published: Tuesday, August 06, 2013
Last Updated: Tuesday, August 06, 2013
Bookmark and Share
Researchers have identified a characteristic unique to cancer cells in an animal model of cancer.

An enzyme that metabolizes the glucose needed for tumor growth is found in high concentrations in cancer cells, but in very few normal adult tissues. Deleting the gene for the enzyme stopped the growth of cancer in laboratory mice, with no associated adverse effects, reports Nissim Hay, UIC professor of biochemistry and molecular genetics, and his colleagues in the August 12 issue of Cancer Cell.

Targeting glucose metabolism for cancer therapy — while avoiding adverse effects in other parts of the body — has been a “questionable” strategy, Hay said. But he and his coworkers showed that the glucose-metabolism enzyme hexokinase-2 can be almost completely eliminated in adult mice without affecting normal metabolic functions or lifespan.

Hexokinase-2 is abundant in embryos but absent in most adult cells, where related enzymes take over its role in metabolism. One of the changes that mark a cell as cancerous is expression of the embryonic enzyme. Hay and his colleagues showed that the embryonic version is required for cancer cells to proliferate and grow, and that eliminating it halts tumor growth.

They developed a mouse strain in which they could silence or delete the HK2 gene in the adult animal, and they found that these mice could not develop or sustain lung or breast cancer tumors but were otherwise normal and healthy.

“We have deleted the HK2 gene systemically in these mice, and they have been living for more than two years now. Their lifespan is the same as normal mice,” Hay said.

The researchers also looked at human lung and breast cancer cells in the lab, and found that if they eliminated all HK2, the cells stopped growing.

“We think that the process we used to delete the HK2 gene is not absolutely perfect, so there must be some low levels of HK2 in the mice. But that seems to be enough for the cells that use HK2, and the therapeutic effects on tumors in these mice are stable.”

Hay thinks the enzyme is involved in making the building-blocks for the DNA of cancer cells, which need lots of all cellular components as they rapidly divide.

“Without HK2, the cancer cells don’t make enough DNA for new cells, and so tumor growth comes to a standstill,” said Hay.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!