Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Discover a Molecular ‘Switch’ in Cancers of the Testis and Ovary

Published: Wednesday, August 07, 2013
Last Updated: Wednesday, August 07, 2013
Bookmark and Share
Research could lead to new drugs to turn ‘switch’ off.

Cambridge scientists have identified an ‘on/off’ switch in a type of cancer which typically occurs in the testes and ovaries called ‘malignant germ cell tumours’. The research was published today, 01 August, in the journal Cancer Research.

Malignant germ cell tumours arise in sperm- or egg-forming cells and usually occur in the reproductive organs, the testes or ovaries. The cancerous tumours are seen in patients of all ages, both in childhood and adulthood.

Although many patients do well after treatment, current chemotherapy treatments can have severe long-term side effects, including hearing loss and damage to the kidneys, lungs and bone marrow. For some patients, outcomes remain poor and testicular cancer continues to be a leading cause of death in young men.

The scientists found that all malignant germ cell tumours contain large amounts of a protein called LIN28. This results in too little of a family of tiny regulator molecules called let-7. In turn, low levels of let-7 cause too much of numerous cancer-promoting proteins in cells. Importantly, the cancer-promoting proteins include LIN28 itself, so there is a vicious cycle that acts as an ‘on’ switch to promote malignancy. The researchers have likened these changes to a ‘cascade effect’, extending down from the large amounts of LIN28 to affect many properties of the cancer cells.

The researchers also discovered that by reducing amounts of the protein LIN28, or by directly increasing amounts of let-7, it is possible to reverse the vicious cycle. Both ways reduced levels of the cancer-promoting proteins and inhibited cell growth. Because the level of LIN28 itself goes down, the effects are reinforced and act as an ‘off’ switch to reduce cancerous behaviour.

Nick Coleman, Professor of Molecular Pathology, Cambridge University said: “We need new ways of treating patients with malignant germ cell tumours to minimise the toxic effects of chemotherapy and to improve survival rates when tumours are resistant to treatment. Having identified this ‘on/off’ switch, it will now be important to identify new drugs that can be used to keep it in the ‘off’ position.”
Dr Matthew Murray, Academic Consultant in Paediatric Oncology, Addenbrooke’s Hospital, Cambridge said: “The switch effect that we have discovered is present in all malignant germ cell tumours, whether they occur in males or females, young or old. Such a fundamental abnormality makes an excellent new target for treating these tumours.”

Susanne Owers, Director of Fundraising at Addenbrooke’s Charitable Trust, which funded this research, said: “We are delighted to have supported this study, which has identified a key protein that triggers this type of cancer. ACT funds clinical academic researchers, like Dr Murray and Prof Coleman, because they are perfectly positioned to understand the clinical problems, working closely with patients, an insight not available to all researchers. Studies like this have the potential to make a tangible difference to patients, by identifying targets for the development of new drugs which may improve survival and have less side-effects compared with standard chemotherapy treatments. By funding this research, ACT – with the help of our supporters – can make a powerful contribution, enabling ground breaking research to be performed.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Four-Stranded ‘Quadruple Helix’ DNA Structure Proven to Exist in Human Cells
Discovery opens up possibilities for a new generation of targeted therapies for cancer.
Monday, January 21, 2013
Cambridge Scientist Appointed Inaugural Jubilee Professor of the Indian Academy of Sciences
The Indian Academy of Sciences has appointed Professor Ashok Venkitaraman from the University of Cambridge as its first Jubilee Professor in 2012.
Friday, June 29, 2012
Cambridge Botanist Awarded ‘America’s Nobel’ Prize for Medical Research
David Baulcombe, the Professor of Botany at Cambridge University, is being honored with the 2008 Lasker Award for Basic Medical Research.
Friday, October 31, 2008
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!