Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Mechanism Offers Promising New Approach for Harnessing the Immune System to fight Cancer

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
Researchers discover how to unleash the immune system against cancer in mice without triggering autoimmune reactions.

St. Jude Children’s Research Hospital scientists have discovered a way to target the immune system to shrink or eliminate tumors in mice without causing autoimmune problems. Researchers also found evidence that the same mechanism may operate in humans. The study was published today in the advance online edition of Nature.

The findings provide a new target for ongoing efforts to develop immunotherapies to harness the immune system to fight cancer and other diseases.

The work focused on white blood cells called regulatory T cells. These specialized cells serve as the immune system’s police force, working to control inflammation and guard against autoimmune and inflammatory disease. Regulatory T cells can, however, interfere with the immune system’s ability to fight cancer.

In this study, investigators identified a mechanism that boosts the ability of regulatory T cells to cause problems by blocking an effective anti-tumor immune response. The same process, however, plays no role in maintaining immune balance or preventing the misguided immune attack on healthy tissue that leads to autoimmune problems, researchers reported. Blocking this mechanism led to the elimination or dramatic reduction of melanoma by the immune system in mice, without causing the autoimmune and inflammatory problems often associated with current cancer-treatment efforts that target immune regulators, scientists said.

“Regulatory T cells are a major barrier to effective anti-tumor immunity,” said the study’s corresponding author, Dario Vignali, Ph.D., vice chair of the St. Jude Department of Immunology. “We have identified a mechanism that enhances the ability of regulatory T cells to put the brakes on the immune response in tumors but plays no role in immune system maintenance. For the first time, we may now have an opportunity to selectively target the activity of regulatory T cells for treatment of cancer without inducing autoimmune or inflammatory complications.”

The mechanism is built around two proteins. One, semaphorin-4a (Sema4a), is carried on the surface of various immune cells that can spark inflammation. The other, neuropilin-1 (Nrp1), is carried on the surface of regulatory T cells.

Vignali and his colleagues used a variety of molecular and cellular techniques to show that Sema4a binding to Nrp1 turns on a biochemical pathway in mouse regulatory T cells that enhances their function, stability and survival. When scientists eliminated Nrp1 on just regulatory T cells, those cells were unable to respond to signals that normally bolstered their anti-inflammatory activity.

When investigators analyzed human regulatory T cells, they found evidence that the pathway may also serve the same role.

In addition, more than 16 months after losing Nrp1 activity in their regulatory T cells, the mice showed no signs of autoimmune or inflammatory complications. “That is significant because mice and humans that lack or have substantial defects in regulatory T cells develop lethal autoimmune disease,” Vignali said.

Knocking out or blocking the activity of Nrp1 on regulatory T cells in mouse models of several human cancers, including the deadly skin cancer melanoma, led to reduced, delayed or complete elimination of the tumors. Blocking Sema4a had a similar anti-tumor effect, researchers reported. “The impact was particularly dramatic in a mouse model of human melanoma,” Vignali said. “Mice lacking Nrp1 on regulatory T cells were almost completely resistant to developing melanoma, but did not develop any autoimmune or inflammatory complications.”

Although investigators have not yet identified which cells carry Sema4a in tumors and boost regulatory T cell function, the scientists did report that immune cells called plasmacytoid dendritic cells (pDCs) provided more than half of the Sema4a in tumors in this study. That was surprising because pDCs make up a very small percentage of immune cells, and there is a long history of suppressive interactions between regulatory T cells and pDCs in tumors, Vignali said. Both cell types are recognized as inducing the immune system to tolerate, rather than attack, tumors.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor Suppressor Protein Plays Key Role In Maintaining Immune Balance
St. Jude Children’s Research Hospital scientists show that the PTEN tumor suppressor protein is essential for proper regulatory T cell function; discovery offers new focus for improving treatment of autoimmune diseases.
Wednesday, January 21, 2015
Gene Sequencing Project Mines Data Once Considered 'Junk' for Clues about Cancer
St. Jude Children’s Research Hospital takes new approach to measuring the repetitive DNA at the end of chromosomes and opens new window on mechanisms fueling cancer.
Monday, January 28, 2013
Gene Identified as a New Target for Treatment of Aggressive Childhood Eye Tumor
St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project findings help solve mystery of retinoblastoma’s rapid growth in work that also yields a new treatment target and possible therapy.
Monday, January 16, 2012
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos