Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Devise Innovative Method to Profile and Predict the Behavior of Proteins

Published: Friday, August 09, 2013
Last Updated: Friday, August 09, 2013
Bookmark and Share
A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell.

However, precisely how these components work together to complete these tasks has long eluded scientists.

But now, a team of researchers has found a way to map an enzyme’s underlying molecular machinery, revealing patterns that could allow them to predict how an enzyme behaves – and what happens when this process disrupted.

In the latest issue of the journal Cell, a team of scientists led by Gladstone Institutes and UC San Francisco investigator Nevan Krogan, PhD, Texas A&M University’s Craig Kaplan, PhD, and UCSF professor Christine Guthrie, PhD, describe a new technique – called the point mutant E-MAP (pE-MAP) approach—that gives researchers the ability to pinpoint and map thousands of interactions between each of an enzyme’s many moving parts.

The researchers focused on a well-known enzyme – called RNA polymerase II (RNAPII) – and used the single-cellular yeast species S. cerevisiae as a model. Researchers had previously mapped the physical structure of RNAPII, but not how various parts of the enzyme work with other proteins within the cell to perform vital functions.

“Scientists know RNAPII’s physical structure, but this large enzyme has many distinct regions that each perform distinct functions,” said Kaplan, who is also a scientist at Texas A&M AgriLife. “We wanted to connect the dots between these regions and their function.”

In laboratory experiments, the team took a genetic approach – generating 53 variations of RNAPII, so-called RNAPII “mutants,” that each changed a specific part of RNAPII. They wanted to test each mutant against a particular function. In this way, they could link a specific region in the enzyme to a specific function.

But to do so, they had to compare each of the mutants against thousands of functions that RNAPII might be involved in within the cell – an immense task that couldn’t be accomplished by traditional methods. So the team developed the pE-MAP approach.

“Instead of crossing a single point mutant with one or two different mutants, pE-MAP lets us cross each one with more than 1,000,” said Krogan, who also directs the California Institute for Quantitative Biosciences, or QB3, at UCSF. “This gives us 1,000 data points for each mutant, which we then use to build our high-resolution profiles.”

“Until now, the only way to get similar information was to deactivate, or “knock out” specific genes within an enzyme and observe the impact,” explained Hannes Braberg, a graduate student in Krogan’s lab and the paper’s lead author. “But RNAPII is so critical that deactivating even one gene often kills the cell. So instead of knocking out the genes, we mutated them.”

The team then correlated the newly generated profiles to how well each variation of RNAPII could transcribe DNA into RNA – the enzyme’s most important function. The research team found that some of the RNAPII mutants transcribed more slowly than the others, while others were much faster. Further analysis revealed that the slow transcribers showed key similarities with each other, as did the fast transcribers. A pattern began to emerge that allowed them to predict the transcription speed – fast or slow – for each mutant.

And then the team discovered yet another phenomena related to transcription, involving a process called splicing, whereby specific stretches of non-coding RNA are cut out, and what remains is stitched back together. Previously, scientists had hypothesized that the transcription speed was related to splicing – in that fast transcribers would be less accurate splicers, and vice versa. But no one had been able to see it in action. So Guthrie, whose lab researches splicing, used the profiles generated from the pE-MAP approach to observe in real time how different transcription speeds affected splicing precision.

“When you slow down transcription, splicing gets more efficient,” said Guthrie. “We saw the opposite effect in our fast transcribers—which had long been predicted but had never before been observed. This was another testament to the power of the pE-MAP approach.”

The approach used here could be applied to studies of other enzymes, explained the authors. And what the researchers learn could then be used to develop an understanding of how mutations in enzymes like RNAPII lead to specific disease states – and may ultimately inform our ability to correct them.

This research received support from QB3, the National Institutes of Health, the National Science Foundation, the Searles Scholars Program and the W.M. Keck Foundation.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
Pan-Cancer Studies Find Common Patterns Shared by Different Tumor Types
Findings may open up new treatment options by extending therapies effective in one cancer type to others with a similar genomic profile.
Wednesday, October 02, 2013
RNA Molecule Is Behind Behavior Changes Cued by Environment
UCSF study may point to key mechanism of cellular memory.
Thursday, September 05, 2013
Disabling Enzyme Cripples Tumors, Cancer Cells
Knocking out a single enzyme dramatically cripples the ability of aggressive cancer cells to spread and grow tumors.
Thursday, September 05, 2013
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos