Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Metabolic 'Fingerprinting' of Tumours Could Help Bowel Cancer Patients

Published: Tuesday, August 13, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
New research makes it possible to see how advanced a bowel cancer is by looking at its metabolic 'fingerprint.'

Bowel cancer is the third most common type of cancer globally, with over one million new cases diagnosed every year. Accurately determining the stage that a tumour has reached is crucial for deciding which treatments to offer.

Metabolic fingerprinting looks at the levels of many different metabolites, which are the products of chemical reactions in the body’s cells, in a sample of blood, urine or tissue. This mix of metabolites alters as cancer develops and grows. The researchers behind the new study, from Imperial College London, suggest that doctors could use metabolic fingerprinting alongside existing imaging technology to give them the most accurate possible analysis of a tumour. The work is published in the journal  Annals of Surgery.

Doctors currently use a combination of CT, MRI and ultrasound scanning to evaluate how advanced a tumour is, but as these scans rely on visual estimations of a tumour’s size and location, they are not always sufficiently sensitive or specific. Previous studies have shown that these techniques regularly suggest that a tumour is more advanced, or less advanced, than it really is.

Dr Reza Mirnezami, the lead author of the study from the Department of Surgery and Cancer at Imperial College London, said: “Working out the stage of a tumour is critical for planning a patient’s treatment. Increasingly, before we surgically remove a tumour, we will give therapies to try and shrink it down, but the kinds of therapies we offer depend on our assessment of how advanced that tumour is. The more accurate we can be, the better the patient’s chances of survival.

“Our research suggests that using metabolic fingerprinting techniques in addition to scanning could give us the clearest possible picture of how the cancer is progressing.”

For the new study, researchers analysed the metabolic fingerprint of 44 bowel tumour tissue samples, provided by patients at Imperial College Healthcare NHS Trust, using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). Their results were as accurate at determining the stage that the cancer had reached as existing radiological methods.

Professor Lord Ara Darzi, the Paul Hamlyn Chair of Surgery at Imperial, and senior author of the study, said: “We know that even with the impressive scanning technology we have available at the moment, it’s not always possible to correctly ascertain the local stage of a cancer. Our study suggests that used alongside medical imaging, metabolic fingerprinting could enable us to gain more accurate information. This would give us greater certainty about the right course of treatment to give to patients, sparing some patients from invasive treatment where they don’t need it.”

The research also suggests that tumours take on unique metabolic properties as they become more advanced, opening up new avenues for treatment. The researchers hope that ultimately, it may be possible to take out different metabolic targets when the cancer is at different stages, in order to disable or slow down the tumour.

Professor Jeremy Nicholson, Head of the Department of Surgery and Cancer at Imperial and corresponding author for the study, said: “This study represents one part of our program of advanced technology development to improve patient safety in the surgical environment and shows the huge potential of using metabolic models to stratify patients and optimise therapy.”

The study was funded by the National Institute for Health Research Imperial Biomedical Research Centre.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Technique Negotiates Neuron Jungle To Target Source Of Parkinson’s Disease
Researchers from Imperial College London and Newcastle University believe they have found a potential new way to target cells of the brain affected by Parkinson’s disease.
Wednesday, September 23, 2015
New Drug Target Identified for Serious Heart and Lung Condition
A gene has been identified that sheds new light on a potentially fatal heart and lung condition and could lead to a new treatment.
Friday, August 14, 2015
Gene Therapy for Cystic Fibrosis Shows Encouraging Trial Results
A therapy that replaces the faulty gene responsible for cystic fibrosis in patients' lungs has produced encouraging results in a major UK trial.
Friday, July 03, 2015
Researchers Develop New Breath Test to Diagnose Oesophageal and Gastric Cancer
Test will now be tested in a larger trial involving three hospitals in London.
Tuesday, June 23, 2015
Imperial Researchers Win Health Foundation Grant for Cancer Innovation Study
Each project will receive over £450,000 of funding to support the research.
Tuesday, May 26, 2015
Engineering Bacteria for Vaccine Delivery
An eight million Euro project has been launched with the aim of engineering bacteria to deliver vaccines against antibiotic-resistant infections.
Monday, May 18, 2015
Diet Swap has Dramatic Effects on Colon Cancer Risk for Americans and Africans
New study confirms that a high fibre diet can substantially reduce risk.
Saturday, May 02, 2015
Protein That Boosts Immunity to Viruses and Cancer Discovered
Researchers now developing a gene therapy designed to boost the infection-fighting cells.
Saturday, April 18, 2015
New Test can Help Doctors Choose Best Treatment for Ovarian Cancer
ADNEX discriminate between benign and malignant tumours with a high level of accuracy.
Friday, October 17, 2014
New Cancer Drug To Begin Trials In Multiple Myeloma Patients
Scientists at Imperial College London have developed a new cancer drug which they plan to trial in multiple myeloma patients by the end of next year.
Tuesday, October 14, 2014
First Pictures of BRCA2 Protein Show How it Works to Repair DNA
Researchers purified the protein and used electron microscopy to reveal its structure.
Thursday, October 09, 2014
Protein ‘Map’ Could Lead to Potent New Cancer Drugs
Findings will help scientists to design drugs that could target NMT enzyme.
Saturday, September 27, 2014
What Lies Behind the Death of Stem Cells
Researchers have identified key processes that control stem cell survival, providing insights that could improve their use in medicine.
Friday, September 19, 2014
Self-assembling Nanoparticle Could Improve MRI Scanning for Cancer Diagnosis
Scientists have designed the nanoparticle that targets tumours, to help doctors diagnose cancer earlier.
Wednesday, July 16, 2014
UN Targets on Health Risk Factors can Prevent 37 Million Deaths by 2025
Reaching globally-agreed targets for health risks such as smoking and alcohol can prevent more than 37 million deaths by 2025.
Tuesday, May 13, 2014
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos