Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists at GIS Discover Gene that Controls the Birth of Neurons

Published: Thursday, August 29, 2013
Last Updated: Thursday, August 29, 2013
Bookmark and Share
Discovery of long non-coding RNA's role in neurogenesis may lead to cures for diseases such as Alzheimer's disease.

Scientists at A*STAR's Genome Institute of Singapore (GIS) have discovered an unusual gene that controls the generation of neurons. This important finding, which is crucial in understanding serious diseases of the brain such as Alzheimer's disease, was reported in the 8th August 2013 issue of the prestigious scientific journal, Molecular Cell.

The central nervous system is composed of numerous cell types that develop into a complex, higher-ordered structure.

The birth of neurons (known as neurogenesis) is a process that requires exquisite temporal and spatial control of hundreds of genes.

The expression of these genes is controlled by regulatory networks, usually involving proteins, which play critical roles in establishing and maintaining the nervous system.

Problems with neurogenesis are the basis of many neurological disorders, and the understanding of the molecular details of neurogenesis is therefore crucial for developing treatments of serious diseases.

Researchers at the GIS, led by Principal Investigator Prof Lawrence Stanton, discovered a key component within a gene regulatory network which controls the birth of new neurons, called RMST.

Surprisingly, this new discovery is not a protein. Rather, RMST is an atypical, long non-coding RNA (lncRNA for short; pronounced as "link RNA").

The new findings demonstrate that the RNA does not produce a protein to handle the regulatory process. Instead, it acts directly as a regulatory mechanism. LncRNAs are a newly discovered class of RNA whose functions remain mostly unknown.

The new discovery of how RMST works within a gene regulatory network not only sheds light on the process of neurogenesis, but also generates new insight into how lncRNA works together with protein components to regulate the important biological processes of gene expression.

Prof Lawrence Stanton said, "There is now great excitement about the revelation that RNA is more than just a messenger carrying genetic information that encodes for proteins. New classes of RNA, called long non-coding RNAs (lncRNA), have been discovered, which are capable of unanticipated functional diversity. However, systematic functional investigations of exactly what, and how, lncRNAs do in our cells remain scant. Our study paves the way for understanding a crucial role played by a lncRNA in human neurons."

Associate Prof Leonard Lipovich, from the Center for Molecular Medicine and Genetics at the Wayne State University and a member of GENCODE, said, "In their paper in Molecular Cell, Stanton and colleagues show how RMST, a human lncRNA, directly regulates SOX2, a key transcription factor protein that is instrumental for directing the birth of new neurons. Even more intriguingly, they highlight that RMST controls SOX2 by directly interacting with the protein. The paper is therefore an important advance in the still nascent and controversial field of riboregulators, or RNAs that regulate proteins in our cells. DNA-binding proteins that turn genes on and off were traditionally thought to be distinct from RNA-binding proteins. Stanton et al, however, illuminate the cryptic, yet crucial, RNA-binding roles for DNA-binding transcription factors: lncRNAs just might be the definitive regulatory switch that controls these factors' activity."

GIS Executive Director Prof Huck Hui Ng added, "One cannot overemphasize the importance of neurogenesis, which is responsible for the normal functioning of one of the most important biological systems in the body. Larry Stanton and his team have made an exciting finding, one that could lead to new approaches in the treatment of neural diseases. This latest work has built upon their unique, interdisciplinary expertise, developed over the past 10 years at the GIS, in applying cutting-edge genomics technologies to the study of the human body."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Advancing the Understanding and Research of Botulinum Neurotoxin Biology
Ipsen and the Institute of Molecular and Cell Biology (IMCB) announce the signature of a research partnership to study the intracellular trafficking of botulinum neurotoxins (BoNTs) within neurons.
Monday, May 16, 2016
A*STAR Findings on Breast Cancer Hold Potential for New Treatments
Computational techniques to increase understanding of diseases and improve patient treatments.
Friday, October 30, 2015
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
New Tool to Study Critical Protein Interaction in Cancer Research
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.
Thursday, July 03, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
Singapore Scientists Discover New RNA Processing Pathway Important in hESCs
Discovery of RNA regulator could lead to a better understanding of diseases like cancer and influenza.
Monday, September 09, 2013
A*STAR Scientist Alex Matter Awarded Prestigious Szent-Gyorgyi Prize For Progress In Cancer Research
National Foundation for Cancer Research honours Professor Alex Matter with esteemed award for groundbreaking cancer pill that gives leukaemia patients a new lease of life.
Friday, April 05, 2013
A*STAR's GIS Collaborates with GSK to Further Research on Lung Cancer
Partnership will advance both organizations' joint efforts towards finding a cure for the disease.
Thursday, January 31, 2013
A*STAR Scientists Discover Potential Drug for Deadly Brain Cancer
This discovery can potentially prevent the progression and relapse of deadly brain tumours.
Tuesday, January 15, 2013
Singapore Scientists Identify New Biomarker for Cancer in Bone Marrow
This discovery may potentially cure patients of multiple myeloma.
Friday, December 14, 2012
A*STAR Scientists Identify Potential Drug Target for Inflammatory Diseases Including Cancers
This discovery holds the potential to reduce healthcare costs for many common inflammatory diseases such as cancer and diabetes.
Thursday, November 22, 2012
A*STAR Scientists Pinpoint Genetic Changes that Spell Cancer
Fruit flies light the way for scientists to uncover genetic changes.
Thursday, August 16, 2012
A*STAR Chief Scientist Wins Cancer Research UK Lifetime Achievement Prize
Professor Lane will receive the award at the National Cancer Research Institute Cancer Conference in Liverpool.
Thursday, July 19, 2012
Discovery of the Cellular Origin of Cervical Cancer
A team of scientists have identified a unique set of cells in the cervix that are the cause of HPV related cervical cancers.
Tuesday, June 12, 2012
Scientific News
Gene Therapy for Metabolic Liver Diseases
Researchers have tested gene therapy in pigs from hereditary tyrosinemia type 1, with corrected liver cells being transplanted into the diseased liver.
Gene Terapy for Muscle Wasting Developed
New gene therapy could save millions of people suffering from muscle wasting disease.
Testing Nanoparticle Drug Delivery in Dogs
Scientists have tested a nanoparticle drug delivery against bone cancer in dogs with promising results.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Exploiting Malaria’s Achilles’ Heel
Researchers have uncovered an Achilles' heel in malaria's anti-drug treatment arsenal that could lead to a disease cure.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!