Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

An Easier Way to Control Genes

Published: Tuesday, September 03, 2013
Last Updated: Tuesday, September 03, 2013
Bookmark and Share
New method for turning genes on and off could enable more complex synthetic biology circuits.

MIT researchers have shown that they can turn genes on or off inside yeast and human cells by controlling when DNA is copied into messenger RNA — an advance that could allow scientists to better understand the function of those genes.

The technique could also make it easier to engineer cells that can monitor their environment, produce a drug or detect disease, says Timothy Lu, an assistant professor of electrical engineering and computer science and biological engineering and the senior author of a paper describing the new approach in the journal ACS Synthetic Biology.

“I think it’s going to make it a lot easier to build synthetic circuits,” says Lu, a member of MIT’s Synthetic Biology Center. “It should increase the scale and the speed at which we can build a variety of synthetic circuits in yeast cells and mammalian cells.”

The new method is based on a system of viral proteins that have been exploited recently to edit the genomes of bacterial and human cells. The original system, called CRISPR, consists of two components: a protein that binds to and slices DNA, and a short strand of RNA that guides the protein to the right location on the genome.

“The CRISPR system is quite powerful in that it can be targeted to different DNA binding regions based on simple recoding of these guide RNAs,” Lu says. “By simply reprogramming the RNA sequence you can direct this protein to any location you want on the genome or on a synthetic circuit.”

Lead author of the paper is Fahim Farzadfard, an MIT graduate student in biology. Samuel Perli, a graduate student in electrical engineering and computer science, is also an author.

Targeting transcription

In previous studies, CRISPR has been used to snip out pieces of a gene to disable it or replace it with a new gene. Lu and his colleagues decided to use the CRISPR system for a different purpose: controlling gene transcription, the process by which a sequence of DNA is copied into messenger RNA (mRNA), which carries out the gene’s instructions.

Transcription is tightly regulated by proteins called transcription factors. These proteins bind to specific DNA sequences in the gene’s promoter region and either recruit or block the enzymes needed to copy that gene into mRNA.

For this study, the researchers adapted the CRISPR system to act as a transcription factor. First, they modified the usual CRISPR protein, known as Cas9, so that it could no longer snip DNA after binding to it. They also added to the protein a segment that activates or represses gene expression by modulating the cell’s transcriptional machinery.

To get Cas9 to the right place, the researchers also delivered to the target cells a gene for an RNA guide that corresponds to a DNA sequence on the promoter of the gene they want to activate.

The researchers showed that once the RNA guide and the Cas9 protein join together inside the target cell, they accurately target the correct gene and turn on transcription. To their surprise, they found that the same Cas9 complex could also be used to block gene transcription if targeted to a different part of the gene.

“This is nice in that it allows you do to positive and negative regulation with the same protein, but with different guide RNAs targeted to different positions in the promoter,” Lu says.

‘A lot of flexibility’

The new system should be much easier to use than two other recently developed transcription-control systems based on DNA-binding proteins known as zinc fingers and transcription activator-like effector nucleases (TALENs), Lu says. Although they are effective, designing and assembling the proteins is time-consuming and expensive.

“There’s a lot of flexibility with CRISPR, and it really comes from the fact that you don’t have to spend any more time doing protein engineering. You can just change the nucleic acid sequence of the RNAs,” Lu says.

The researchers also designed the transcription-control system so that it can be induced by certain small molecules that can be added to the cell, such as sugars. To do this, they engineered the genes for the guide RNAs so that they are only produced when the small molecule is present. Without the small molecule, there is no guide RNA and the targeted gene is undisturbed.

This type of control could be useful for studying the role of naturally occurring genes by turning them on and off at specific points during development or disease progression, Lu says.

Lu is now working on building more advanced synthetic circuits to perform applications such as making decisions based on several inputs from a cell’s environment. “We’d like to be able to scale this up and demonstrate the most complex circuits that anyone’s ever built in yeast and mammalian cells,” he says.

The research was funded by the Defense Advanced Research Projects Agency, the National Institutes of Health New Innovator Award and the National Science Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
No More Insulin Injections?
Encapsulated pancreatic cells offer possible new diabetes treatment.
Tuesday, January 26, 2016
Engineering Foe into Friend
Bose Grant awardee Jacquin Niles aims to repurpose the malaria parasite for drug delivery.
Monday, January 25, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
How Cancer Cells Spread
Study offers new targets for drugs that may prevent cancer from spreading.
Thursday, December 17, 2015
Delivering microRNAs for Cancer Treatment
Scientists exploit gene therapy to shrink tumors in mice with an aggressive form of breast cancer.
Wednesday, December 09, 2015
Using Ultrasound to Improve Drug Delivery
New approach could aid in treatment of inflammatory bowel disease.
Friday, October 23, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!