Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Singapore Scientists Discover New RNA Processing Pathway Important in hESCs

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
Discovery of RNA regulator could lead to a better understanding of diseases like cancer and influenza.

Scientists at A*STAR's Genome Institute of Singapore (GIS), in collaboration with their counterparts from Canada, Hong Kong and US, have discovered a protein mediator SON plays a critical role in the health and proper functioning of human embryonic stem cells (hESCs).

This finding was reported on 8th September 2013 in the advanced online issue of the prestigious science journal Nature Cell Biology.

Correct expression of genes is essential for a cell to stay alive and to perform other cellular and physiological functions. During gene expression, DNA is first converted into RNA transcript and then some parts of it are removed while others are joined before the trimmed RNA transcript can be translated into proteins.

This process of cutting and joining different pieces of RNA is called splicing, and the proteins that mediate splicing are known as splicing factors.

Mutations in splicing factors can cause diseases such as myotonic dystrophy and cancer. Even though hESCs have been studied extensively over the last decade due to their potential to differentiate into cell-types of potential clinical applications, little is known about the role that splicing plays in the regulation of pluripotency in these cells.

Scientists at the GIS followed their previous study on a genome-wide investigation of gene functions in hESCs, which was published in Nature [Chia et al. 2010. 468(7321):316-20], and found that splicing factors, such as the protein known as SON, are key regulators of hESC maintenance.

SON was discovered to be essential for converting differentiated cells into pluripotent stem cells. In addition, SON promotes correct splicing of a particular group of RNAs, including those coding for essential hESC regulators, and thereby helps hESCs to survive in an undifferentiated state.

Moreover, the authors showed that silencing of SON induced new transcript isoforms that seemed to be non-functional in hESCs.

The study, led by GIS Executive Director Prof Ng Huck Hui, establishes an initial connection between splicing and pluripotency in hESCs and contributes to the comprehensive understanding of the nature of hESCs.

Besides its role in hESCs, SON was previously found to be involved in the development of leukemia and influenza virus infection.

Prof Ng Huck Hui said, "Maintenance and differentiation of human embryonic stem cells are governed by an intricate network that comprises diverse cellular processes. In the past, we had been focusing primarily on transcriptional regulation. In our new study, it is clear that splicing contributes to the unique cellular state of hESCs and this can be explained in part through the function of a protein known as SON. SON regulates the precise splicing of specific transcripts which are important for pluripotency. A systematic dissection of the different pathways required for maintenance of pluripotency can eventually guide us in engineering novel cellular states in the laboratory."

"In this new manuscript in Nature Cell Biology, Ng Huck Hui and his colleagues continue to cement their position at the forefront of pluripotency research worldwide," said Dr Alan Colman, the former Executive Director of the Singapore Stem Cell Consortium. "The distinctive feature of human embryonic stem cells is their ability to either self renew or alternatively, given the right conditions, to differentiate into all the cell types that comprise the adult body. In previous work, the team had uncovered a number of unique transcription factors that mediate the maintenance of pluripotency via binding to genomic DNA. In this latest publication, they reveal a novel mechanism where SON, a protein localized to nuclear speckles, regulates the proper splicing of transcripts encoding pluripotency regulators such as OCT4, PRDM14, E4F1 and MED24, and ensures cell survival and maintenance of pluripotency in hESC (and by extrapolation, presumably human induced pluripotent stem cells also)."

Prof Eran Meshorer from the Department of Genetics at the Hebrew University of Jerusalem added, "In recent years, a growing number of papers focusing on the transcriptional regulators that control embryonic stem cell biology have been published. However, the link between RNA splicing and pluripotency has only very recently emerged and the factors that regulate splicing and alternative splicing in ES cells are unknown. The paper by Ng Huck Hui and colleagues now shows that the splicing regulator SON, previously identified in a screen conducted by the same group for novel pluripotency-related factors, regulates the splicing of several key pluripotency genes, linking splicing with stem cell biology and pluripotency. This paper provides a major step towards a more complete understanding of the mechanisms controlling pluripotency and self-renewal, and calls for the identification of additional splicing regulators in ES cells. It is also tempting to speculate that SON and other splicing-related proteins may assist in converting somatic cells into pluripotent cells in the process of reprogramming."

Prof Meshorer is the winner of the 2013 Sir Zelman Cowen Universities Fund Prize for Medical Research for the extensive and work undertaken in his laboratory to shed light on pluripotency.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
New Tool to Study Critical Protein Interaction in Cancer Research
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.
Thursday, July 03, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
Scientists at GIS Discover Gene that Controls the Birth of Neurons
Discovery of long non-coding RNA's role in neurogenesis may lead to cures for diseases such as Alzheimer's disease.
Thursday, August 29, 2013
A*STAR Scientist Alex Matter Awarded Prestigious Szent-Gyorgyi Prize For Progress In Cancer Research
National Foundation for Cancer Research honours Professor Alex Matter with esteemed award for groundbreaking cancer pill that gives leukaemia patients a new lease of life.
Friday, April 05, 2013
A*STAR's GIS Collaborates with GSK to Further Research on Lung Cancer
Partnership will advance both organizations' joint efforts towards finding a cure for the disease.
Thursday, January 31, 2013
A*STAR Scientists Discover Potential Drug for Deadly Brain Cancer
This discovery can potentially prevent the progression and relapse of deadly brain tumours.
Tuesday, January 15, 2013
Singapore Scientists Identify New Biomarker for Cancer in Bone Marrow
This discovery may potentially cure patients of multiple myeloma.
Friday, December 14, 2012
A*STAR Scientists Identify Potential Drug Target for Inflammatory Diseases Including Cancers
This discovery holds the potential to reduce healthcare costs for many common inflammatory diseases such as cancer and diabetes.
Thursday, November 22, 2012
A*STAR Scientists Pinpoint Genetic Changes that Spell Cancer
Fruit flies light the way for scientists to uncover genetic changes.
Thursday, August 16, 2012
A*STAR Chief Scientist Wins Cancer Research UK Lifetime Achievement Prize
Professor Lane will receive the award at the National Cancer Research Institute Cancer Conference in Liverpool.
Thursday, July 19, 2012
Discovery of the Cellular Origin of Cervical Cancer
A team of scientists have identified a unique set of cells in the cervix that are the cause of HPV related cervical cancers.
Tuesday, June 12, 2012
A*STAR and GE Global Research Sign Memorandum of Understanding
Agreement to develop integrated advanced medical imaging technologies for improved clinical diagnosis.
Friday, April 13, 2012
Scientific News
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Revolutionary Gene-editing Technique to Stop AIDS Virus in Its Tracks
UNLV personalized medicine researchers seeking patent on potential HIV cure. Their technique uses a plant protein widely used in agriculture industry.
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos