Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer Vaccine Begins Phase I Clinical Trials

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
Cross-disciplinary team brings novel therapeutic cancer vaccine to human clinical trials.

A cross-disciplinary team of scientists, engineers, and clinicians announced today that they have begun a Phase I clinical trial of an implantable vaccine to treat melanoma, the most lethal form of skin cancer.

The effort is the fruit of a new model of translational research being pursued at Harvard University that integrates the latest cancer research with bioinspired technology development. It was led by David J. Mooney, who is the Robert P. Pinkas Family Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard, along with Glenn Dranoff, who is co-leader of Dana-Farber Cancer Institute’s Cancer Vaccine Center, a professor at Harvard Medical School, and an associate faculty member at the Wyss Institute.

Most therapeutic cancer vaccines available today require doctors to first remove the patient’s immune cells from the body, then reprogram them and reintroduce them back into the body. The new approach, which was first reported to eliminate tumors in mice in Science Translational Medicine in 2009, instead uses a small disk-like sponge about the size of a fingernail that is made from FDA-approved polymers. The sponge is implanted under the skin, and is designed to recruit and reprogram a patient’s own immune cells “on site,” instructing them to travel through the body, home in on cancer cells, then kill them.

The technology was initially designed to target cancerous melanoma in skin, but might have application to other cancers. In the preclinical study reported in Science Translational Medicine, 50 percent of mice treated with two doses of the vaccine—mice that would have otherwise died from melanoma within about 25 days—showed complete tumor regression.

“Our vaccine was made possible by combining a wide range of biomedical expertise that thrives in Boston and Cambridge,” said Mooney, who specializes in the design of biomaterials for tissue engineering and drug delivery. “It reflects the bioinspired engineering savvy and technology development focus of engineers and scientists at the Wyss Institute and Harvard SEAS, as well as the immunological and clinical expertise of the researchers and clinicians at Dana-Farber and Harvard Medical School.”

“This is expected to be the first of many new innovative therapies made possible by the Wyss Institute’s collaborative model of translational research that will enter human clinical trials,” said Wyss Founding Director Don Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and a Professor of Bioengineering at Harvard SEAS. “It validates our approach, which strives to move technologies into the clinical space much faster than would be possible in a traditional academic environment. It’s enormously gratifying to see one of our first technologies take this giant leap forward.”

The Wyss Institute comprises a consortium of researchers, engineers, clinicians, and staff with industrial and business development experience from Harvard University and nine other collaborating institutions in Greater Boston.

“It is rare to get a new technology tested in the laboratory and moved into human clinical trials so quickly,” said Dranoff, who also leads the Dana-Farber/Harvard Cancer Center Program in Cancer Immunology. “We’re beyond thrilled with the momentum, and excited about its potential.”

Recruitment of participants for the clinical trial began recently under the leadership of F. Stephen Hodi, Jr., Director of Dana-Farber’s Melanoma Center and Associate Professor of Medicine at Harvard Medical School. The goal of the Phase I study, which is expected to conclude in 2015, is to assess the safety of the vaccine in humans.

The cancer vaccine work has received support from the Wyss Institute, Dana-Farber, and the National Institutes of Health. In addition to Mooney, Dranoff, and Hodi, other collaborators include Edward Doherty and Omar Ali at the Wyss Institute; Jerry Ritz, Director of the Cell Processing Laboratory at Dana-Farber; Sara Russell and Charles Yoon, surgeons at Dana-Farber; and other clinical research team members based at Dana-Farber.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

High Poverty’s Effect on Childhood Leukemia
Patients more likely to suffer early relapses, which can be harder to treat.
Thursday, February 25, 2016
A Cancer’s Surprise Origins, Caught in Action
First demonstration of a melanoma arising from a single cell.
Monday, February 01, 2016
Seeing Hope
Gene therapy/drug combo restores some vision in mice with optic nerve injury.
Wednesday, January 20, 2016
Cell Memory Loss Enables the Production of Stem Cells
Scientists identify a molecular key that helps maintain identity and prevents the conversion of adult cells into iPS cells.
Thursday, December 17, 2015
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.
Thursday, September 24, 2015
Delivering Hope in Ovarian Cancer
Gene therapy blocked chemoresistant tumor growth in mice.
Tuesday, August 11, 2015
The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
Tuesday, June 23, 2015
One Molecule at a Time
The ability to study single molecules provides tangible targets for personalised medicine.
Monday, May 18, 2015
A Marker for Breast Cancer
Research says it soon may be possible to gauge individual risk for disease, and eventually to treat it.
Tuesday, August 13, 2013
Developing Cancer Drugs
Researchers find therapeutic potential in ‘undruggable’ target.
Wednesday, June 19, 2013
Researchers at Harvard’s Wyss Institute Engineer Novel DNA Barcode
Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created a new kind of barcode that could come in an almost limitless array of styles.
Tuesday, September 25, 2012
Scientific News
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Poliovirus Therapy Wins 'Breakthrough' Status
FDA decision will fast-track research on breakthrough Duke brain cancer therapy.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
New Treatment for Pancreatic Cancer
Researchers at Purdue University have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis.
Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!