Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellular Switch Controls Growth of Brain Tumor Cells

Published: Tuesday, September 24, 2013
Last Updated: Tuesday, September 24, 2013
Bookmark and Share
Researchers investigate that the protein RIP1 acts as a mediator of brain tumor cell survival.

Researchers at UT Southwestern Medical Center have identified a cellular switch that potentially can be turned off and on to slow down, and eventually inhibit the growth of the most commonly diagnosed and aggressive malignant brain tumor.

Findings of their investigation show that the protein RIP1 acts as a mediator of brain tumor cell survival, either protecting or destroying cells.

Researchers believe that the protein, found in most glioblastomas, can be targeted to develop a drug treatment for these highly malignant brain tumors. The study was published online Aug. 22 in Cell Reports.

“Our study identifies a new mechanism involving RIP1 that regulates cell division and death in glioblastomas,” said senior author Dr. Amyn Habib, associate professor of neurology and neurotherapeutics at UT Southwestern, and staff neurologist at VA North Texas Health Care System.

Dr. Habib continued, “For individuals with glioblastomas, this finding identified a target for the development of a drug treatment option that currently does not exist.”

In the study, researchers used animal models to examine the interactions of the cell receptor EGFRvIII and RIP1. Both are used to activate NFκB, a family of proteins that is important to the growth of cancerous tumor cells.

When RIP1 is switched off in the experimental model, NFκB and the signaling that promotes tumor growth is also inhibited.

Furthermore, the findings show that RIP1 can be activated to divert cancer cells into a death mode so that they self-destruct.

According to the American Cancer Society, about 30 percent of brain tumors are gliomas, a fast-growing, treatment-resistant type of tumor that includes glioblastomas, astrocytomas, oligodendrogliomas, and ependymomas.

In many cases, survival is tied to novel clinical trial treatments and research that will lead to drug development.

The Department of Neurology and Neurotherapeutics at UT Southwestern is ranked in the top 20 in the nation, according to U.S. News & World Report.

UT Southwestern physicians routinely deal with the most difficult neurology cases referred from around the region, state, and nation.

The research was conducted with support from the National Institutes of Health, NASA, and the Cancer Prevention and Research Institute of Texas.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
UT Southwestern Scientists Synthesize Nanoparticles
Synthetic nanoparticles to deliver tumor-suppressing therapies to damaged livers.
Wednesday, January 27, 2016
Tumor-suppressing Gene Works by Restraining Mobile Genetic Elements
Findings from the study leads to new ways of diagnosing and treating cancer.
Saturday, January 23, 2016
UTSW Researchers Identifies How Drugs Alter Pancreatic Cancer Cells
The findings were published in Cell Reports.
Friday, January 22, 2016
Researchers Find a Small Protein that Plays a Big Role in Heart Muscle Contraction
New protein, DWORF, stimulates a calcium-ion pump that controls muscle contraction.
Friday, January 15, 2016
UT Southwestern Scientists Discover a New Role for RNA
Safeguarding chromosome number in human cells, with implications for cancer biology.
Wednesday, December 30, 2015
UT Southwestern Scientist Honored as Rising Star in Texas Research
Dr. Joshua Mendell selected as the recipient of the 2016 Edith and Peter O’Donnell Award in Medicine.
Saturday, December 12, 2015
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Saturday, October 10, 2015
UT Southwestern Biochemist Receives NIH Early Independence Award
Dr. William Israelsen studies on hibernation may aid the fight against cancer.
Wednesday, October 07, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!