Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

'Jekyll and Hyde' Protein Offers New Route to Cancer Drugs

Published: Friday, September 27, 2013
Last Updated: Friday, September 27, 2013
Bookmark and Share
The mood changes of a 'Jekyll-and-Hyde' protein, which sometimes boosts tumour cell growth and at other times suppresses it, have been explained.

The researchers in Britain, with collaborators in Singapore and the USA, carried out a comprehensive biological study of the protein E2F, which is abnormal in the vast majority of cancers. They were able to explain the dual natures it can take up in cells in the body, and indicate how it could be a potent target for developing new cancer drugs.

The Oxford University scientists have since carried out a drug-discovery screen, and shown that compounds which block the protein’s change into 'Mr Hyde' result in the death of cancer cells.

'This mechanism for switching a key protein is very novel. Nothing else I’ve come across behaves like it,' says Professor Nick La Thangue of the Department of Oncology at Oxford University, who led the work. 'Subtle changes in terms of the chemistry of the protein have dramatic and polar opposite effects on the tumour cell, either allowing them to continuously grow or switching them to cell death mode.

'We are excited by this new discovery, which provides a new and very important approach to developing new types of cancer drugs. We have much work to do,' says Professor La Thangue.

The researchers from the University of Oxford, the Genome Institute of Singapore and the University of Texas' MD Anderson Cancer Centre in the USA report their findings in the journal Molecular Cell. The study was part-funded by the UK Medical Research Council and Cancer Research UK.

Cells in the body go through cycles of growth and division, pauses and death in a highly regulated way. Cancer involves the breakdown of these controls leading to unlimited expansion of the cells in a growing tumour.

The protein E2F is inextricably linked to cancer. It is normally tightly controlled in the cell cycle, but in most if not all cancer cells the processes E2F oversees go awry so that it keeps cells growing.

Puzzlingly, while it can be a factor driving cancer, on other occasions E2F is protective and removes damaged cells. When normal cells experience damage, E2F is involved in switching the cell towards cell death in a process called apoptosis. This helps prevent the build up of DNA errors and the development of cancer.

It’s this dual Jekyll-and-Hyde nature of E2F that the researchers have been able to explain for the first time.

They show that E2F is an important switch that determines cell fate. As Dr Jekyll, when DNA damage is detected, it leads to cell death. As Mr Hyde, it switches on cell growth and proliferation – and in most if not all cancers, it is this function of E2F that becomes out of control.

The researchers show that two enzymes compete to attach a molecular label, or flag, on different parts of the E2F protein. The flag in one position sees E2F act to cause cell death and the same flag in another position see E2F boost cell growth and proliferation.

Professor La Thangue says: 'It's like there’s an angel and a devil competing to get on each shoulder of the protein. Which one gets the upper hand is able to whisper in the ear of the protein and tell it what it should do. With the molecular flag on one shoulder, E2F goes into cell kill mode. With the flag on the other, it goes into cell growth mode. The challenge is to mimic this process with drugs, and reinstate the death pathway in tumour cells.'

In cancer cells, E2F gets stuck with the flag boosting growth and division, helping drive the tumour's growth. The researchers identified another protein in the cell which looks for the presence of this flag.

'Blocking this protein means the devil's whispers never get heard and E2F doesn't transform into Mr Hyde,' says Professor La Thangue. 'Instead, E2F switches over to cell-death mode and the cancer cells die out.

'We've identified compounds – drug candidates - that do exactly that,' he explains.

Dr Shunsheng Zheng, first author of the study and a graduate student on the joint A*STAR-University of Oxford DPhil scholarship programme, said: 'E2F is a tricky protein to work with. Normal cells use it for growth, cancer cells need it for hypergrowth, but too much of it seems to drive cancer cells into suicidal mode.'

Dr Kat Arney, science information manager at Cancer Research UK, which part-funded the work, said: 'Cancer is a complex biological problem, and getting to grips with the molecules that drive it is essential if we're to find new cures. Although there's a lot more work to be done before this new discovery could become a treatment for patients, this research is an important step forward in understanding E2F’s "split personality" in both driving and destroying cancer cells.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Eating Organic Food Doesn't Lower Overall Cancer Risk
Women who always or mostly eat organic foods have the same likelihood of developing cancer as women who eat conventionally produced foods.
Tuesday, April 01, 2014
New Trial of Personalized Cancer Treatment Begins in Oxford
Phase I trial in Oxford will investigate a new drug, called CXD101.
Tuesday, March 18, 2014
Scientists Break Blood-Brain Barrier to Allow Cancer Drugs In
Oxford University scientists have found a way of delivering drugs more effectively to treat life-threatening cancers that have spread to the brain.
Tuesday, October 15, 2013
Sex Hormones Linked to Breast Cancer Risk in Women Under 50
Premenopausal women with high levels of sex hormones in their blood have an increased risk of breast cancer, though further research is needed to understand this link.
Wednesday, July 24, 2013
One-two Combination Floors Cancer
A new tag-team approach to combating a type of skin cancer is showing early promise in the lab.
Wednesday, June 26, 2013
46 Gene Sequencing Test for Cancer Patients on the NHS
The first multi-gene test that can help predict cancer patients' responses to treatment using the latest DNA sequencing techniques has been launched in the NHS.
Wednesday, March 27, 2013
Rare Genetic Faults Identified in Families with Bowel Cancer
The findings are published in the journal Nature Genetics.
Friday, January 04, 2013
Genetic Cause of Insulin Sensitivity Offers Diabetes Clues
The first single gene cause of increased sensitivity to the hormone insulin has been discovered by a team of Oxford University researchers.
Friday, September 14, 2012
Probing What Fuels Cancer
Cancer is often described as a genetic disease, after all the transition a cell goes through in becoming cancerous tends to be driven by changes to the cell's DNA.
Monday, August 06, 2012
Scientific News
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Revolutionary Gene-editing Technique to Stop AIDS Virus in Its Tracks
UNLV personalized medicine researchers seeking patent on potential HIV cure. Their technique uses a plant protein widely used in agriculture industry.
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos