Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Overexpressed Protein A Culprit in Certain Thyroid Cancers

Published: Tuesday, October 15, 2013
Last Updated: Tuesday, October 15, 2013
Bookmark and Share
Study by UT Southwestern researchers suggests a link between nervous system and cancer.

A specific protein once thought to exist only in the brain may play a crucial role in a deadly form of thyroid cancer, as well as other cancers, and provide a fresh target for researchers seeking ways to stop its progression, UT Southwestern Medical Center researchers report today in Cancer Cell.

The scientists found that over-activation of a certain protein in hormone-secreting cells helps fuel medullary thyroid cancer cells in mice as well as in human cells, making the protein a potentially good target for therapies to inhibit the growth of these cancer cells. 

The discovery by the multidisciplinary team at UT Southwestern has implications for neuroendocrine cancers that arise in organs farther removed from the brain, including the lung and the pancreas.

Although rare, medullary thyroid cancer is often fatal.

“Once or twice a month, patients come to UT Southwestern, often complaining of soreness or a swollen throat,” says Dr. Fiemu Nwariaku, Professor of Surgery and a co-author on the paper. “When the diagnosis is a rare and incurable form of thyroid cancer called medullary thyroid carcinoma, it is always distressing for the patient – and for me – because we currently have no real therapies that truly extend life in these unfortunate cases.”

The only effective treatment is complete surgical removal of the thyroid, and frequently, tissues around the area of the tumor. Unfortunately, like cervical cancer, medullary thyroid cancer often is not diagnosed until it already has spread to other parts of the body.

More than 20 years ago, mutations in a gene were found to cause about 25 percent of these cancers. Genetic sequencing and screening has become an important diagnostic and prognostic tool for those families that share such mutations. But the causes for the remaining 75 percent of patients with this dangerous cancer have remained unknown and a source of frustration for endocrinologists and surgeons such as Dr. Nwariaku, also Associate Dean of Global Health.

While Dr. Nwariaku and his colleagues work to treat these patients, a laboratory in UT Southwestern’s Department of Psychiatry run by Dr. James Bibb, Associate Professor of Psychiatry and Neurology and Neurotherapeutics, was studying molecular mechanisms of brain disorders. In studying Alzheimer’s and other forms of dementia, Dr. Bibb and his colleagues made a transgenic mouse model of brain injury by overexpressing the Cdk5 protein that they thought was only in the brain.

As the team tracked the developing neurological problems, however, they noted that the mice became sick for reasons that were not at first apparent. The puzzle was solved when they discovered that all of the mice had developed the same thyroid cancer that Dr. Nwariaku treats.

Dr. Bibb and Dr. Nwariaku teamed up and launched a study of both human and mouse thyroid cancer cells. They discovered that Cdk5 was present in specific cells of the thyroid called C cells, and that the protein could escape normal cellular control and cause the cancer in both humans and mice.

Now, with the help of other UT Southwestern scientists, Dr. Bibb and Dr. Nwariaku, both members of the Harold C. Simmons Cancer Center, are making important progress in their efforts to develop new treatments for this and other more common forms of endocrine cancers. One promising example is the use of high-throughput screening for compounds that block the Cdk5 protein pathway, the researchers said.

“There are currently two FDA-approved drugs for treating neuroendocrine cancers, but neither of them blocks this specific pathway – one this study has shown to be a crucial vulnerability in the cancer, if appropriately targeted,” Dr. Bibb said. “We were surprised, but encouraged, by the finding because they link the human nervous system to disease processes that include the toughest of all foes, cancer.” 

Other researchers participating in the study included Dr. James Richardson, Professor of Pathology, Molecular Biology, and Plastic Surgery, who first recognized the disease in the mouse, and Dr. Xiankai Sun, Associate Professor of Radiology, who was able to track the development of the mouse tumors using advanced in vivo imaging. The work also includes an international collaboration of scientists and physicians who contributed insight and rare samples for the investigation. The research is being funded by the American Cancer Society.

"This research is ongoing, and we are now identifying precisely how Cdk5 causes the growth and spread of these forms of cancer with the goal of discovering new drugs, which we can test in our animal model,” Dr. Bibb said. “We want to work together to translate our laboratory bench-derived insight into treatments that help cancer patients. We also think we will learn more about brain injury by studying this cancer.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
UT Southwestern Scientists Synthesize Nanoparticles
Synthetic nanoparticles to deliver tumor-suppressing therapies to damaged livers.
Wednesday, January 27, 2016
Tumor-suppressing Gene Works by Restraining Mobile Genetic Elements
Findings from the study leads to new ways of diagnosing and treating cancer.
Saturday, January 23, 2016
UTSW Researchers Identifies How Drugs Alter Pancreatic Cancer Cells
The findings were published in Cell Reports.
Friday, January 22, 2016
Researchers Find a Small Protein that Plays a Big Role in Heart Muscle Contraction
New protein, DWORF, stimulates a calcium-ion pump that controls muscle contraction.
Friday, January 15, 2016
UT Southwestern Scientists Discover a New Role for RNA
Safeguarding chromosome number in human cells, with implications for cancer biology.
Wednesday, December 30, 2015
UT Southwestern Scientist Honored as Rising Star in Texas Research
Dr. Joshua Mendell selected as the recipient of the 2016 Edith and Peter O’Donnell Award in Medicine.
Saturday, December 12, 2015
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Saturday, October 10, 2015
UT Southwestern Biochemist Receives NIH Early Independence Award
Dr. William Israelsen studies on hibernation may aid the fight against cancer.
Wednesday, October 07, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!