Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Promising New Approach to Drug-Resistant Infections

Published: Wednesday, October 16, 2013
Last Updated: Wednesday, October 16, 2013
Bookmark and Share
A new type of antibiotic called a PPMO, which works by blocking genes essential for bacterial reproduction, successfully killed a multidrug-resistant germ common to health care settings.

Researchers from UT Southwestern Medical Center believe the technology and new approach offer potential promise against the growing problem of antibiotic resistance.

The pathogen (germ) – called Acinetobacter – can cause infections from pneumonia to serious blood or wound infections, posing greater risk to people with weakened immune systems, chronic lung disease, or diabetes, according to the Centers for Disease Control and Prevention (CDC). Acinetobacter infection mainly affects hospitalized patients or those in long-term care facilities, such as those on ventilators or with urinary catheters or patients treated for open wounds. The CDC considers Acinetobacter, which is resistant to many antibiotics, one of the top bacterial infection threats in the U.S.

In the study in today’s Journal of Infectious Diseases, PPMOs designed to combat two strains of Acinetobacter reduced the number of infectious bacteria in mice by more than 90 percent. Survival of infected mice also improved with the treatment. One of the targeted strains was A. baumannii, a dangerous type that accounts for about 80 percent of reported Acinetobacter infections, according to the CDC.

“We set out to target specific genes in Acinetobacter in an effort to inhibit the bacterium’s growth,” said Dr. David Greenberg, assistant professor of internal medicine and microbiology and senior author of the study. “With infections from drug-resistant pathogens rising rapidly, there is an urgent need to come up with new approaches such as the use of PPMOs to spur antibiotic development.”

The technology that created the synthetic PPMO could be used to develop similar antibiotics targeting other bacteria and viruses, he added.

“We believe there is a lot of promise in developing new antibiotics that target specific pathogens as opposed to so-called broad-spectrum antibiotics that target whole classes of bacteria,” said Dr. Greenberg.

Whereas broad-spectrum antibiotics can kill off multiple pathogens, PPMOs are pathogen-specific and work by silencing essential genes that help that particular strain of bacteria or virus grow. A PPMO, or peptide-conjugated phosphorodiamidate morpholino oligomer, mimics the structure of a nucleic acid and binds to mRNA, preventing the formation of proteins. PPMOs have not been tested in humans, although a compound of similar chemical structure is being tested as a therapy in Duchenne muscular dystrophy patients.

More research is needed before the PPMOs are ready for human testing, said Dr. Greenberg, who was assisted in the study by Kimberly Marshall-Batty, a senior research associate in internal medicine.

Future studies will involve development and testing of PPMOs targeting other specific bacteria and virus types. Researchers also may try to create a PPMO that silences genes involved in antibiotic resistance.

The study involved researchers from UT Southwestern, Oregon State University, and Sarepta Inc., a Massachusetts-based pharmaceutical company that supplied the PPMOs for testing. Support for the study was provided by the National Institutes of Health. Prior to this study, Dr. Greenberg had served as a consultant to Sarepta. The study’s lead author at Oregon State formerly worked at AVI BioPharma, now called Sarepta, and holds several PPMO patents. Neither holds any equity interest or options in Sarepta. 


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Scientists Identify New and Beneficial Function of Endogenous Retroviruses
Researchers found that ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Cancer Researchers Identify Gene Mutations and Process for How Kidney Tumors Develop
Researchers have identified more than 3,000 new mutations by using next generation gene sequencing techniques.
Saturday, November 29, 2014
Study Identifying Cell of Origin for Large, Disfiguring Nerve Tumors
Lays groundwork for development of new therapies.
Wednesday, November 12, 2014
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!