Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Super-Enhancers Seen as ‘Rosetta Stone’ for Dialog Between Genes and Disease

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
Regulatorsthat control cell identity found to be enriched in mutated regions of genome.

Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named “super-enhancers”—act across a vast array of human cell types and are enriched in mutated regions of the genome that are closely associated with a broad spectrum of diseases.

The findings, published online today by the journal Cell, suggest that these super-enhancers, first described in Cell several months ago by Whitehead Member Richard Young, could ultimately play important roles in disease diagnostics and therapeutics.

In April, Young reported that while the total number of genetic control elements is likely in the millions, only a few hundred super-enhancers regulate the key genes that give each cell its unique properties and functions. At the time, Young hinted that the discovery, which was based on work primarily in embryonic stem cells, would help to solve the regulatory circuitry of all human cells. This latest research represents a significant step toward that goal, producing a catalog of super-enhancers in nearly 100 human cell and tissue types.

“We’ve gone from a few cells to a broad swath of human cell types to create this resource and make it available to the biomedical research community,” says Young, who is also a professor of biology at MIT.

Young notes that the striking finding of the new study is that beyond their roles in control of healthy cells, super-enhancers are involved in regulating the function—and dysfunction—of diseased cells.

“We were surprised that for so many different diseases, mutations associated with the disease occur in super-enhancers” says postdoctoral scientist Brian Abraham, an author of the study. Indeed, he and other researchers in Young’s lab found in disease-relevant cell types genetic mutations associated with Alzheimer’s disease, diabetes, and many autoimmune diseases in genomic regions under the control of specific super-enhancers.

The researchers also found super-enhancers operating in particularly insidious fashion across a broad spectrum of cancers, observing cancer cells assembling their own super-enhancers to overproduce malevolent oncogenes that drive such cancer hallmarks as hyperproliferation, invasion, and metastasis. Young believes that identifying, mapping, and disrupting super-enhancers could alter the way cancers are managed in the clinic.

“When we focus on personalized medicine for cancer patients, super-enhancers could serve as useful biomarkers for tracking and understanding the evolution of a person’s cancer,” says Young. “Ultimately, super-enhancers may well become important targets for therapeutic intervention.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
Friday, September 25, 2015
Thwarting Protein Production Slows Cancer Cells’ Malignant March
Protein production or translation is tightly coupled to a highly conserved stress response that cancer cells rely on for survival and proliferation.
Tuesday, July 23, 2013
Scientists Identify Gene that Controls Aggressiveness in Breast Cancer Cells
Researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumor-forming cancer stem cells (CSCs).
Monday, July 08, 2013
Putting microRNAs on the Stem Cell Map
Whitehead researchers have now discovered how microRNAs fit into the map of embryonic stem cell circuitry.
Friday, August 08, 2008
Scientists Identify Gene that Regulates Polarity in Regenerating Flatworms
Whitehead scientists have discovered that the gene Smed-beta-catenin-1 is required for proper decisions about head-versus-tail polarity in regenerating flatworms.
Monday, December 10, 2007
Scientific News
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
UTSW Creates Nanoparticles That Target Lung Cancer Cells
Researchers at UTSW have developed a synthetic polymers that could deliver nucleic acid drugs while possessing enough structural diversity to discover cancer cell-specific nanoparticles.
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!