Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Small Bits of Genetic Material Fight Cancer's Spread

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
A class of molecules called microRNAs may offer cancer patients two ways to combat their disease.

Researchers at Princeton University have found that microRNAs — small bits of genetic material capable of repressing the expression of certain genes — may serve as both therapeutic targets and predictors of metastasis, or a cancer's spread from its initial site to other parts of the body. The research was published in the journal Cancer Cell.

MicroRNAs are specifically useful for tackling bone metastasis, which occurs in about 70 percent of patients with late-stage cancer, said senior author Yibin Kang, Princeton's Warner-Lambert/Parke-Davis Professor of Molecular Biology. During bone metastasis, tumors invade the bone and take over the cells known as osteoclasts that normally break down old bone material as new material grows. These cells then go into overdrive and dissolve the bone far more quickly than they would during normal bone turnover, which leads to bone lesions, bone fracture, nerve compression and extreme pain.

"The tumor uses the osteoclasts as forced labor," explained Kang, who is a member of the Rutgers Cancer Institute of New Jersey and adviser to Brian Ell, a graduate student in the Princeton Department of Molecular Biology and first author on the study. Kang and Ell worked with scientists at the IRCCS Scientific Institute of Romagna for the Study and Treatment of Cancer in Meldola, Italy, and the University Cancer Center in Hamburg, Germany. In this video, Ell describes his research on using small RNAs for treating and monitoring bone metastasis.

MicroRNAs can reduce that forced labor by inhibiting osteoclast proteins and thus limiting the number of osteoclasts present. Ell and his colleagues observed that bones exhibiting metastasis developed significantly fewer lesions when injected with microRNAs. Their findings suggest that microRNAs could be effective treatment targets for tackling bone metastasis — and also may help doctors detect the cancer's spread to the bone, Kang said. Samples collected from human patients revealed a strong correlation between elevated levels of another group of microRNAs and the occurrence of bone metastasis, the researchers found.

In a commentary accompanying the study in Cancer Cell, researchers who were not associated with the work wrote, "This [study] represents significant insight into our understanding of the organ-specific function and pathological activity of miRNAs, which could lead to improvements in diagnosis, treatment and prevention of bone metastases and elucidates a unique aspect of the bone microenvironment to support tumor growth in bone." The commentary was authored by David Waning, Khalid Mohammad and Theresa Guise of Indiana University in Indianapolis.

Kang said he ultimately hopes to extend mice experimentation to clinical trials. "In the end, we want to help the patients," he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Physicists, Biologists Unite to Expose How Cancer Spreads
New study has found that cancer cells that can break out of a tumor are more aggressive and nimble than nonmalignant cells.
Thursday, May 02, 2013
Nanotechnology Breakthrough could Dramatically Improve Medical Tests
A laboratory test used to detect disease and perform biological research could be made more than 3 million times more sensitive, say researchers who combined standard biological tools with a breakthrough in nanotechnology.
Tuesday, June 26, 2012
mRNA Profile Independently Predicts Prostate Cancer Prognosis
Scientists have found that classifying prostate tumors according to their mRNA expression patterns can help predict disease aggressiveness and poor prognosis in patients with low- or mid-range Gleason scores.
Wednesday, November 30, 2011
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Exploiting Malaria’s Achilles’ Heel
Researchers have uncovered an Achilles' heel in malaria's anti-drug treatment arsenal that could lead to a disease cure.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!