Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Incurable Brain Cancer Gene Is Silenced

Published: Wednesday, November 06, 2013
Last Updated: Wednesday, November 06, 2013
Bookmark and Share
Gene regulation technology increases survival rates in mice with glioblastoma.

Glioblastoma multiforme (GBM), the brain cancer that killed Sen. Edward Kennedy and kills approximately 13,000 Americans a year, is aggressive and incurable. Now a Northwestern University research team is the first to demonstrate delivery of a drug that turns off a critical gene in this complex cancer, increasing survival rates significantly in animals with the deadly disease.

The novel therapeutic, which is based on nanotechnology, is small and nimble enough to cross the blood-brain barrier and get to where it is needed -- the brain tumor. Designed to target a specific cancer-causing gene in cells, the drug simply flips the switch of the troublesome oncogene to “off,” silencing the gene. This knocks out the proteins that keep cancer cells immortal.

In a study of mice, the nontoxic drug was delivered by intravenous injection. In animals with GBM, the survival rate increased nearly 20 percent, and tumor size was reduced three to four fold, as compared to the control group. The results are published today (Oct. 30) in Science Translational Medicine.

“This is a beautiful marriage of a new technology with the genes of a terrible disease,” said Chad A. Mirkin, a nanomedicine expert and a senior co-author of the study. “Using highly adaptable spherical nucleic acids, we specifically targeted a gene associated with GBM and turned it off in vivo. This proof-of-concept further establishes a broad platform for treating a wide range of diseases, from lung and colon cancers to rheumatoid arthritis and psoriasis.”

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering.

Glioblastoma expert Alexander H. Stegh came to Northwestern University in 2009, attracted by the University’s reputation for interdisciplinary research, and within weeks was paired up with Mirkin to tackle the difficult problem of developing better treatments for glioblastoma.

Help is critical for patients with GBM: The median survival rate is 14 to 16 months, and approximately 16,000 new cases are reported in the U.S. every year.

In their research partnership, Mirkin had the perfect tool to tackle the deadly cancer: spherical nucleic acids (SNAs), new globular forms of DNA and RNA, which he had invented at Northwestern in 1996, and which are nontoxic to humans. The nucleic acid sequence is designed to match the target gene.

And Stegh had the gene: In 2007, he and colleagues identified the gene Bcl2Like12 as one that is overexpressed in glioblastoma tumors and related to glioblastoma’s resistance to conventional therapies.

“My research group is working to uncover the secrets of cancer and, more importantly, how to stop it,” said Stegh, a senior co-author of the study. “Glioblastoma is a very challenging cancer, and most chemo-therapeutic drugs fail in the clinic. The beauty of the gene we silenced in this study is that it plays many different roles in therapy resistance. Taking the gene out of the picture should allow conventional therapies to be more effective.”

Stegh is an assistant professor in the Ken and Ruth Davee Department of Neurology at the Northwestern University Feinberg School of Medicine and an investigator in the Northwestern Brain Tumor Institute.

The power of gene regulation technology is that a disease with a genetic basis can be attacked and treated if scientists have the right tools. Thanks to the Human Genome Project and genomics research over the last two decades, there is an enormous number of genetic targets; having the right therapeutic agents and delivery materials has been the challenge.

“The RNA interfering-based SNAs are a completely novel approach in thinking about cancer therapy,” Stegh said. “One of the problems is that we have large lists of genes that are somehow disregulated in glioblastoma, but we have absolutely no way of targeting all of them using standard pharmacological approaches. That’s where we think nanomaterials can play a fundamental role in allowing us to implement the concept of personalized medicine in cancer therapy.”

Stegh and Mirkin’s drug for GBM is specially designed to target the Bcl2Like12 gene in cancer cells. Key is the nanostructure’s spherical shape and nucleic acid density. Normal (linear) nucleic acids cannot get into cells, but these spherical nucleic acids can. Small interfering RNA (siRNA) surrounds a gold nanoparticle like a shell; the nucleic acids are highly oriented, densely packed and form a tiny sphere. (The gold nanoparticle core is only 13 nanometers in diameter.) The RNA’s sequence is programmed to silence the disease-causing gene.

“The problems posed by glioblastoma and many other diseases are simply too big for one research group to handle,” said Mirkin, who also is the director of Northwestern’s International Institute for Nanotechnology. “This work highlights the power of scientists and engineers from different fields coming together to address a difficult medical issue.”

Mirkin first developed the nanostructure platform used in this study in 1996 at Northwestern, and the technology now is the basis of powerful commercialized and FDA-cleared medical diagnostic tools. This new development, however, is the first realization that the nanostructures injected into an animal naturally find their target in the brain and can deliver an effective payload of therapeutics.

The next step for the therapeutic will be to test it in clinical trials.

The nanostructures used in this study were developed in Mirkin’s lab on the Evanston campus and then used in cell and animal studies in Stegh’s lab on the Chicago campus.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Monday, January 25, 2016
Uncovering Genetic Factors in Leukemia
Northwestern Medicine scientists have discovered how a gene linked to leukemia functions, a finding that may have important implications for children with Down syndrome who have a higher risk of developing the blood cancer.
Thursday, August 06, 2015
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Wednesday, July 29, 2015
Cancer Genes Turned Off In Deadly Brain Cancer
New therapy approach goes directly to the source of cancer development.
Tuesday, April 07, 2015
Single-Cell Transfection Tool Enables Added Control for Biological Studies
Northwestern University researchers have developed a new method for delivering molecules into single, targeted cells through temporary holes in the cell surface.
Thursday, May 23, 2013
Scientific News
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!