Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Discovered a Mechanism that Induces Migration of Tumor Cells in Liver Cancer

Published: Wednesday, November 06, 2013
Last Updated: Wednesday, November 06, 2013
Bookmark and Share
Coordinated overactivation of TGFb and CXCR4 signaling pathways confer migratory properties to the hepatocellular carcinoma cells.

Researchers from the Biological clues of the invasive and metastatic phenotype group of the Bellvitge Biomedical Research Institute (IDIBELL) led by Isabel Fabregat have discovered the relationship between the TGFb signalling pathways and CXCR4 in hepatocellular carcinoma (HCC) . The cytokine TGFb is dependent of CXCR4 to induce tumor cell migratory ability.

The results of the study are published in the online edition of the journal Hepatology.

Dual function of TGFb

TGFb is a cytokine which in normal conditions and in very early stages of tumorigenesis acts as a tumor suppressor and that inhibits growth and induces cell death. However, as the tumor progresses, the cells acquire mutations or epigenetic alterations that allow them to overcome the suppressive effect of TGFb and respond to this cytokine acquiring a mesenchymal phenotype cells that confers them an increased migratory capacity , very important phenomenon in the tumor metastasis.

"Recently," explained Isabel Fabregat "several research groups are working on finding drugs that inhibit TGFb pathway. But it is important to establish parameters that allow us to predict whether a tumor will respond to TGFb inhibition so as to control tumor progression or whether on the contrary the answer is tumor growth. "

TGFb and CXCR4 relationship
 
In this regard, the study results show that some cell lines of hepatocellular carcinoma (HCC) have overactivated TGFb pathway (by increasing the production of this factor) and always correlate with greater capacity cell migration. An important aspect of the study was the demonstration that this ability depends on another pathway:  CXCR4 protein whose expression is dependent on TGFb. The researchers found that inhibition of CXCR4 blocks TGFb induced migration in tumor cells.

In vitro results were confirmed both in mouse models and in human samples from HCC. "When we analyzed CXCR4 levels in tissues of patients” explained Fabregat "we observed that high levels of this protein correlate always with overactivation of the TGFb pathway and, most interestingly, these patients had a tumor cell phenotype less differentiated, and potentially more aggressive . Moreover, CXCR4 was located preferentially in the areas of tumor invasion.”

 Future clinical application

 "At clinical level," explains the researcher "we believe that patients that reveal an overactivation of TGFb coincident with high expression of CXCR4 in tumor invasion fronts, may be candidates for TGFb inhibitory potential therapies.”

This study was conducted in collaboration with Emilio Ramos of liver surgery unit and Teresa Serrano pathology unit of the University Hospital of Bellvitge. "Our group performs a very basic research but through collaboration with clinicians have a more translational aspect because we can corroborate our results not only in animal models but also in human samples and study whether they can have an impact at the clinical level” said the researcher.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Keeping Growth in Check
Ribosomal proteins RPL5 and RPL11 play an essential role in normal cell proliferation.
Friday, December 13, 2013
High Levels of RANK Protein Interferes with the Differentiation of Mammary Cells
Levels of this protein increase with age, which could explain the increase in breast cancer risk associated with age.
Wednesday, September 11, 2013
Discovered a Future Therapeutic Target for Lung Cancer Treatment
One of the goals of research in cancer genetics and molecular biology is to get an "on demand" treatment, with maximum effect and minimal toxicity.
Monday, July 22, 2013
Discovered the Role of Noncoding 5S rRNA in Protecting the p53 Tumor Suppressor Gene
Over 50% of tumors are associated with mutations in p53.
Thursday, July 04, 2013
An Epigenetic Change Causes the Block of Antitumor Genes
Healthy cells live in a delicate balance between growth-promoting genes (oncogenes) and those who restrain it (anti-oncogenes or tumor suppressor genes).
Wednesday, June 12, 2013
Identified a Key Protein in Maintaining the Identity of B Lymphocytes
This finding could be useful for the study of blood diseases such as lymphoma and leukemia.
Monday, June 10, 2013
Found in Amish a Genetic Mutation Causing Mental Retardation Very Similar to Angelman Syndrome
It is the first time that associates a mutation in HERC2 with human disease.
Wednesday, March 20, 2013
Epigenetic Mechanism through which Protein SirT2 Regulates Cell Cycle Progression and Genomic Stability
The study of IDIBELL researchers confirms antitumor properties of sirtuin 2.
Wednesday, March 20, 2013
Octavio Romero, RTICC 2012 Cooperative Research Award in Oncology
Gene and cancer group at IDIBELL reqarded for cancer suppression paper.
Thursday, November 22, 2012
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!