Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Common Genetic Pathway Could Be Conduit to Pediatric Tumor Treatment

Published: Monday, November 11, 2013
Last Updated: Monday, November 11, 2013
Bookmark and Share
Investigators have found a known genetic pathway to be active in many difficult-to-treat pediatric brain tumors called low-grade gliomas.

In laboratory studies, researchers found that the pathway, called mammalian target of rapamycin (mTOR), was highly active in pediatric low-grade gliomas, and that mTOR activity could be blocked using an experimental drug, leading to decreased growth of these tumors.

"We think mTOR could function as an Achilles heel," says study co-author Eric Raabe, M.D., Ph.D., an assistant professor of pediatrics, oncology and pathology at the Johns Hopkins Kimmel Cancer Center. "It drives cancer growth, but when mTOR is inhibited, the tumor falls apart." The work was described Nov. 7 in the journal Neuro-Oncology.

Overall, brain tumors affect more than 4,000 children each year in the United States, and they are the leading cause of cancer deaths in children, according to Raabe. Low-grade gliomas are the most common group of tumors of the central nervous system in children. Current treatments for these tumors include surgery and chemotherapy, which often cause significant side effects. Many of these tumors are located in areas like the optic pathway, where they can't be easily removed by surgery without causing damage, including blindness. In addition to vision loss, some of Raabe's patients have endured paralysis or learning problems as a result of the tumor or treatment.

"Even though these tumors are considered 'low grade' and not particularly aggressive, many patients suffer severe, life-altering symptoms, so we desperately need better therapies," says Raabe.

For the study, the Johns Hopkins investigators studied tissue samples from 177 pediatric low-grade gliomas, including the most common type -- tumors called pilocytic astrocytomas -- from patients treated at Johns Hopkins and other centers. They also tested the effect of blocking mTOR with an investigational agent known as MK8669 (ridaforolimus) in two pediatric low-grade glioma cell lines.

The mTOR pathway has been shown to be active in a variety of cancers, and drugs that block proteins in the pathway, such as rapamycin, are widely available. The pathway signals through two protein complexes, mTORC1 and mTORC2, which lead to increased cell growth and survival.

The researchers found activity of the mTORC1 pathway in 90 percent of low-grade gliomas studied, and 81 percent of tumors showed activity of both mTORC1 and mTORC2. Components of the mTOR pathway were more commonly found in tumors from optic pathways compared with those from other areas of the brain, according to Fausto Rodriguez , M.D., senior study author and assistant professor of pathology and oncology at Johns Hopkins.

The scientists also found that the mTOR-blocking drug caused up to a 73 percent reduction in cell growth over six days in one cell line, and up to a 21 percent decrease in cell growth over four days in a second cell line.

"Since the pathways are more active in some areas of the brain, compared with others, it suggests that the outcomes of drug treatments targeting those pathways may differ as well," says Rodriguez.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bad Luck of Random Mutations Plays Predominant Role in Cancer, Study Shows
Statistical modeling links cancer risk with number of stem cell divisions.
Tuesday, January 06, 2015
Cancer Leaves a Common Fingerprint on DNA
Chemical alterations to genes appear key to tumor development.
Tuesday, August 26, 2014
Signals Found That Recruit Host Animals’ Cells, Enabling Breast Cancer Metastasis
Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained.
Thursday, May 22, 2014
A Simple Blood Test May Catch Early Pancreatic Cancer
Currently, disease usually found too late to save lives.
Wednesday, October 30, 2013
Tumor-suppressor Protein Gives Up Its Secrets
Discovery promises new targets for cancer drug design.
Friday, July 12, 2013
Cancer-Linked Fam190a Gene Found to Regulate Cell Division
Scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis.
Thursday, July 04, 2013
Scientists Pair Blood Test and Gene Sequencing to Detect Cancer
Scientists have combined the ability to detect cancer DNA in the blood with genome sequencing technology in a test that could be used to screen for cancers, monitor cancer patients for recurrence and find residual cancer left after surgery.
Friday, November 30, 2012
Researchers Link New Molecular Culprit to Breast Cancer Progression
Johns Hopkins researchers have uncovered a protein “partner” commonly used by breast cancer cells to unlock genes needed for spreading the disease around the body.
Wednesday, November 28, 2012
Lost Molecule is Lethal for Liver Cancer Cells in Mice
MicroRNA kills tumor cells and lets healthy cells live. Scientists at Johns Hopkins have discovered a potential strategy for cancer therapy by focusing on what’s missing in tumors.
Friday, June 12, 2009
Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
'Junk' DNA Plays Role in Preventing Breast Cancer
Supposed "junk" DNA, found in between genes, plays a role in suppressing cancer, according to new research by Universities of Bath and Cambridge.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!