Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Un-Junking Junk DNA

Published: Wednesday, November 13, 2013
Last Updated: Wednesday, November 13, 2013
Bookmark and Share
A study shines a new light on molecular tools our cells use to govern regulated gene expression.

The study will be published online in advance of print Nov. 10 in the journal Nature Structural and Molecular Biology.

"We uncovered a novel mechanism that allows proteins that direct pre-mRNA splicing — RNA-binding proteins — to induce a regulatory effect from greater distances than was thought possible," said first author Michael T. Lovci, a biomedical sciences graduate student working in the Department of Cellular and Molecular Medicine, the Stem Cell Research Program and Institute for Genomic Medicine at UC San Diego.

Researchers from California, Oregon, Singapore and Brazil made this finding while working toward an understanding of the most basic signals that direct cell function. According to Lovci, the work broadens the scope that future studies on the topic must consider. More importantly, it expands potential targets of rationally designed therapies which could correct molecular defects through antisense RNA oligonucleotides — small pieces of DNA or RNA that can bind to specific RNA targets to either block interactions with RNA-binding proteins and/or initiate degradation of the target RNA.

"This study provides answers for a decade-old question in biology," explained principal investigator Gene W. Yeo, PhD, assistant professor of Cellular and Molecular Medicine, member of the Stem Cell Research Program and Institute for Genomic Medicine at UC San Diego, as well as with National University of Singapore. "When the sequence of the human genome just over a decade ago, we learned that less than 3 percent of the entire genome contains information that encodes for proteins. This posed a difficult problem for genome scientists - what is the other 97 percent doing?"

The role of the rest of the genome was largely a mystery and was thus referred to as "junk DNA." Since then sequencing of other, non-human, genomes has allowed scientists to delineate the sequences in the genome that are remarkably preserved across hundreds of millions of years of evolution. It is widely accepted that this evidence of evolutionary constraint implies that, even without coding for protein, certain segments of the genome are vital for life and development.

Using this evolutionary conservation as a benchmark, scientists have described varied ways cells use these non-protein-coding regions. For instance, some exist to serve as DNA docking sites for proteins which activate or repress RNA transcription. Others, which were the focus of this study, regulate alternative mRNA splicing.

Eukaryotic cells use alternative pre-mRNA splicing to generate protein diversity in development and in response to the environment. By selectively including or excluding regions of pre-mRNAs, cells make on average ten versions of each of the more than 20,000 genes in the genome. RNA-binding proteins are the class of proteins most closely linked to these decisions, but very little is known about how they actually perform their roles in cells.

"For most genes, protein-coding space is distributed in segments on the scale of islands in an ocean," said John G. Conboy, PhD, of the Lawrence Berkeley National Laboratory, co-lead investigator on the study. "RNA processing machinery, including RNA-binding proteins, must pick out these small portions and accurately splice them together to make functional proteins. Our work shows that not only is the sequence space nearby these ‘islands' important for gene regulation, but that evolutionarily conserved sequences very far away from these islands are important for coordinating splicing decisions."

Since this premise defies existing models for alternative splicing regulation, whereby regulation is enacted very close to protein-coding segments, the authors sought to define the mechanism by which long-range splicing regulation can occur. They identified RNA structures — RNA that is folded and base-paired upon itself — that exist between regulatory sites and far-away protein-coding "islands." Dubbing these types of interactions "RNA-bridges" for their capacity to link distant regulators to their targets, the authors show that this is likely a common and under-appreciated mechanism for regulation of alternative splicing.

These findings have foreseeable implications in the study of biomedicine, the researchers said, as the RNA-binding proteins on which they focused — RBFOX1 and RBFOX2 — show strong associations with neurodevelopmental disorders such as autism and also certain cancers. Since these two proteins act upstream of a cascade of effects, understanding how they guide alternative splicing decisions may lead to advancements in targeted therapies which correct the inappropriate splicing decisions that underlie many diseases.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
Pan-Cancer Studies Find Common Patterns Shared by Different Tumor Types
Findings may open up new treatment options by extending therapies effective in one cancer type to others with a similar genomic profile.
Wednesday, October 02, 2013
RNA Molecule Is Behind Behavior Changes Cued by Environment
UCSF study may point to key mechanism of cellular memory.
Thursday, September 05, 2013
Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
'Junk' DNA Plays Role in Preventing Breast Cancer
Supposed "junk" DNA, found in between genes, plays a role in suppressing cancer, according to new research by Universities of Bath and Cambridge.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!