Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Using microRNA Fit to a T (Cell)

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.

Researchers at the University of California, San Diego School of Medicine have successfully targeted T lymphocytes – which play a central role in the body’s immune response – with another type of white blood cell engineered to synthesize and deliver bits of non-coding RNA or microRNA (miRNA).

The achievement in mice studies, published in this week’s online early edition of the Proceedings of the National Academy of Sciences, may be the first step toward using genetically modified miRNA for therapeutic purposes, perhaps most notably in vaccines and cancer treatments, said principal investigator Maurizio Zanetti, MD, professor in the Department of Medicine and director of the Laboratory of Immunology at UC San Diego Moores Cancer Center.

“From a practical standpoint, short non-coding RNA can be used for replacement therapy to introduce miRNA or miRNA mimetics into tissues to restore normal levels that have been reduced by a disease process or to inhibit other miRNA to increase levels of therapeutic proteins,” said Zanetti.

“However, the explosive rate at which science has discovered miRNAs to be involved in regulating biological processes has not been matched by progress in the translational arena,” Zanetti added. “Very few clinical trials have been launched to date.  Part of the problem is that we have not yet identified practical and effective methods to deliver chemically synthesized short non-coding RNA in safe and economically feasible ways.”

Zanetti and colleagues transfected primary B lymphocytes, a notably abundant type of white blood cell (about 15 percent of circulating blood) with engineered plasmid DNA (a kind of replicating but non-viral DNA), then showed that the altered B cells targeted T cells in mice when activated by an antigen – a substance that provokes an immune system response.

“This is a level-one demonstration for this new system,” said Zanetti. “The next goal will be to address more complex questions, such as regulation of the class of T cells that can be induced during vaccination to maximize their protective value against pathogens or cancer.

“There are reasons to believe that the quality of T cells in response to vaccination matters to the efficacy of protection. This could push vaccination aimed at the induction of T cell responses to a new level of accuracy, predictability and ultimately, efficacy.”

Other potential applications, he said, included targeting and repairing T cells disabled by autoimmune or inflammatory diseases.

“Another objective will be to further control targeting to tissues other than lymphoid organs. For example, cancer cells,” Zanetti said. “There is a world of untapped possibilities out there. We believe that the new idea – and the technology behind it – will carry a great distance in a variety of conditions to aid regulation of the immune system or control or prevent disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
Scientific News
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Guided Chemotherapy Missiles
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Solutions for Biotherapeutic Characterization
Innovation to speed the routine.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Biomarkers That Could Help Give Cancer Patients Better Survival Estimates Discovered
UCLA research may also help scientists suppress dangerous genetic sequences.
Body’s Own Gene Editing System Generates Leukemia Stem Cells
Inhibiting the editing enzyme may provide a new therapeutic approach for blood cancers.
A New Approach to Chemical Synthesis
Communesins, originally found in fungus, could hold potential as cancer drugs.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!