Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Identifying the Pathway that Leads to Cells Forming into an Individual Body

Published: Wednesday, December 11, 2013
Last Updated: Wednesday, December 11, 2013
Bookmark and Share
By studying how genes influence cells to migrate and mutate, scientist hopes findings will lead to improved cancer treatments.

All organisms begin life as a microscopic cluster of cells. What happens next, as they develop, is a source of endless fascination for scientists.

"How do you go from just a ball of cells into an organism that has a shape, and fingers, toes and brain?" says Traci Stevens, associate professor of biology at Randolph-Macon College. "Cells have to move during development. How do they do it? What is involved? How does that ball of cells become an organized individual?"

Stevens, a National Science Foundation (NSF)-funded scientist is trying to find out, specifically by learning more about the work of Abl, a gene responsible for regulating how cells migrate from that initial tiny collection of cells to form a shape and body parts. "It is a gene we all have, and it seems to work similarly in all organisms," she says.

Specifically, she is focusing on how Abl functions in Drosophila--the fruit fly--which has one Abl gene (humans--in fact, all vertebrates--have two related Abl genes, Abl 1 and Abl 2, whereas invertebrates have only one), making it easier to study. Moreover, "fruit flies have stages in development where we know exactly how the cells move and migrate in normal development," she says.

In her experiments, she activates a mutant form of Abl in the flies to see what happens as the altered gene disrupts the migration pattern. If she can see what goes wrong, she will understand what's supposed to go right. "When I can see what happens with a mutant form, it tells us what is supposed to happen normally," she says. "It seems like reverse logic, but that's how geneticists work."

Her research also involves using a genetic screen to search for other genes that interact with Abl. "We don't know all the details as to how Abl regulates cell migration, but we know Abl doesn't do it by itself, that it works with other proteins," she says.

Her work has potential applications in medicine, specifically for cancer treatment, since Abl "is misregulated in a lot of cancers," she says, adding that its dysfunction has an impact both on cell growth and how cancer cells metastasize. The gene is known to have a role in Chronic Myeloid Leukemia (CML), one of several types of leukemia, as well as in breast cancer, non small lung cancer and melanoma, she says.

To be sure, "we are many steps away, but by identifying not just Abl, but the things it interacts with, by understanding that pathway, it could help us control that pathway," she says. Ultimately, this could lead to the design of new drugs "that could inhibit or regulate this pathway in cases of cancer," she says.

She is conducting her research under an NSF Faculty Early Career Development (CAREER) award, which she received in 2009 as part of NSF's American Recovery and Reinvestment Act. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organization. NSF is funding her work with $883,365 over four years.

As part of the grant's educational component, Stevens hosts two high school students and their biology teacher in her lab during the summer. They attend Cosby High School, a science-based high school in Chesterfield, Va. "They come into the lab for five weeks and work on a project or two," she says. "Then at the end of the summer, they present a poster at a college-wide conference."

Stevens is especially proud that one of the participating teachers had an opportunity to present her work at a national Drosophila meeting. "That was a great experience for her," Stevens says.

Stevens is studying Abl's role in two specific stages of fruit fly development. The first, the formation of the epithelium, or skin of the embryo, a process known as dorsal closure, where "there is a big opening on the skin and the cells migrate to close all the way around the embryo," she says. The second, head involution, is when "the inside of the head is on the outside, and those cells migrate inward to form the head," she explains.

"Those are the two stages we study," she adds. "They are both happening at nearly the same time, but at different places. They occur the first day you have a fertilized egg, before it hatches into a larva. So we are looking at the very beginning. We analyze their phenotypes, that is, we look at what developmental processes did not occur properly. For example, are there holes in the head indicating that head involution did not occur properly? Or are there holes in the dorsal surface indicating that there were cell migration problems during dorsal closure?"

In fruit flies, the Abl protein, which is made from the Abl gene, is found in the cytoplasm of the cell just under the cell membrane, where it can control cell migration, rather than in the nucleus, where it could regulate cell division.

In humans, and other vertebrates, Abl 2 is in the cytoplasm, as it is with fruit flies, but Abl 1 "shuttles back and forth between the nucleus and the cytoplasm," she says. "So Abl 1 binds to DNA in the nucleus and controls cell division, which Abl in Drosophila and Abl 2 in humans don't seem to do."

Scientists don't yet understand how the duties are divided between the two Abls in vertebrates and/or whether the two vertebrate genes might play unique roles, that is, roles that Drosophila Abl does not, according to Stevens.

Thus, "the fruit fly can't tell us everything," she says. "But it can tell us how the gene influences how cells move, and that can tell us something about what happens in humans since that is a function conserved in both fruit flies and humans."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

'Smuggling' Drugs at the Cellular Level
Drexel researchers use ultrasound to deliver customized medication through the skin.
Wednesday, December 11, 2013
Bacterial DNA May Integrate Into Human Genome More Readily in Tumor Tissue
Gene transfer may play role in cancer, other diseases linked with DNA damage.
Thursday, June 27, 2013
Scientific News
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!