Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene-Silencing Data Now Publicly Available to Help Scientists Better Understand Disease

Published: Thursday, December 12, 2013
Last Updated: Thursday, December 12, 2013
Bookmark and Share
NIH data-sharing collaboration with Life Technologies will advance genetic and translational research, therapeutic target discovery.

For the first time, large-scale information on the biochemical makeup of small interfering RNA (siRNA) molecules is available publicly. These molecules are used in research to help scientists better understand how genes function in disease. Making this information accessible to researchers worldwide increases the potential of finding new treatments for patients.

NIH's National Center for Advancing Translational Sciences (NCATS) collaborated with Life Technologies Corporation of Carlsbad, Calif., which owns the siRNA information, to make it available to all researchers.

The siRNA molecules, which can selectively turn off genes, are used in RNA interference (RNAi) research. RNAi is a natural process that cells use to control the activity of specific genes. Its discovery led to the 2006 Nobel Prize in Physiology or Medicine.

Last month, a team of NIH scientists, led by Dr. Richard Youle, Ph.D., at the National Institute of Neurological Disorders and Stroke (NINDS), and Scott Martin, Ph.D., at NCATS, used RNAi to find genes that linked to Parkinson's disease, a devastating movement disorder.

The new genes may represent new starting points for developing treatments. The study results were published online in the Nov. 24, 2013, issue of Nature (http://www.ncbi.nlm.nih.gov/pubmed/24270810).

Scientists have harnessed the power of RNAi to study the function of many individual genes by reducing their activity levels, or silencing them. This process enables researchers to identify genes and molecules that are linked to particular diseases.

To do this, researchers use siRNAs, which are RNA molecules that have a complementary chemical makeup, or sequence, to that of a targeted gene. While the gene is silenced, researchers look for changes in cell functions to gain insights about what it normally does. By silencing genes in the cell one at a time, scientists can explore and understand their complex relation to other genes in the context of disease.

Until now, a major limitation in the scientific community's use of RNAi data has been the lack of a publicly available dataset, along with siRNA sequences directed against every human gene. Historically, providers have not allowed publishing of proprietary siRNA sequence information.

To address this problem, NCATS and Life Technologies are providing all researchers with access to siRNA data from Life Technologies' Silencer Select siRNA library, which includes 65,000 siRNA sequences targeting more than 20,000 human genes. Simultaneously, NCATS is releasing complementary data on the effects of each siRNA molecule on biological functions. All of this information is available to the public free-of-charge through NIH's public database PubChem (http://www.ncbi.nlm.nih.gov/pcsubstance?term=%22Life%20Technologies%2C%20Applied%20Biosystems%2C%20Ambion%22[sourcename]&cmd=search).

"Producing and releasing these data demonstrate NCATS' commitment to speeding the translational process for all diseases," said NCATS Director Christopher P. Austin, M.D. "The Human Genome Project showed that public data release is critical to scientific progress. Similarly, I believe that making RNAi data publicly available will revolutionize the study of biology and medicine."

Experts from the NIH RNAi initiative, administered by NCATS' Division of Pre-Clinical Innovation, conduct screens for NIH investigators. They will add new RNAi data into PubChem on an ongoing basis, making the database a growing resource for gene function studies.

"By releasing all our siRNA sequences, we are enabling novel strategies to advance fundamental understanding of biology and discovery of new potential drug targets," said Mark Stevenson, president and chief operating officer of Life Technologies.

NIH invites other companies that sell siRNA libraries and researchers who conduct genome-wide RNAi screens with the Life Technologies library to deposit sequence data and biological activity information into PubChem.

"Translation of siRNA library screening results into impactful downstream experiments is the ultimate goal of scientists using our library," said Alan Sachs, M.D., Ph.D., head of global research and development for Life Technologies. "The availability of these sequence data should greatly facilitate this effort because scientists no longer will be blinded to the actual sequence they are targeting."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Lipid Nanoparticle Therapeutic Treats Ebola in Monkeys
A newly designed agent was effective in treating monkeys infected with a deadly Ebola virus strain.
Wednesday, May 06, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
NIH Study Finds Genetic Link for Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Friday, April 17, 2015
Novel Approach Gives Insights Into Tumor Development
Scientists used a powerful new technique to turn off all the genes in mouse lung cancer cells and test how they affect tumor growth and metastasis.
Tuesday, March 24, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Range of Molecular Alterations in Head and Neck Cancers Uncovered
TCGA tumor genome sequencing analyses offer new insights into the effects of HPV and smoking, and find genomic similarities with other cancers.
Thursday, January 29, 2015
NIH Researchers Tackle Thorny Side of Gene Therapy
Pre-clinical studies in mice reveal ways to reduce cancer risk with modified treatment.
Wednesday, January 21, 2015
NIH Exceptional Responders to Cancer Therapy Study Launched
Study to investigate the molecular factors of tumors associated with exceptional treatment responses of cancer patients to drug therapies.
Friday, September 26, 2014
NIH Announces the Launch of 3 Integrated Precision Medicine Trials
ALCHEMIST is for patients with certain types of early-stage lung cancer.
Tuesday, August 26, 2014
NIH Launches 3 Integrated Precision Medicine Trials
Findings to answer questions about addition of targeted therapies in earlier stage disease and help understand the prevalence and natural history of these genomic changes in earlier stage lung cancer.
Wednesday, August 20, 2014
GTEx Project to Expand Functional Studies of Genomic Variation
Larger set of human tissues to be analyzed to contribute to a database and tissue bank that researchers can use to study how genomic variants influence gene activity.
Wednesday, August 06, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
New Mussel-Inspired Surgical Protein Glue
Korean scientists have developed a light-activated, mussel protein-based bioadhesive that works on the same principles as mussels attaching to underwater surfaces and insects maintaining structural balance and flexibility.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
AncestryDNA and Calico to Research the Genetics of Human Lifespan
Collaboration will analyze family history and genetics to facilitate development of cutting-edge therapeutics.
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!