Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Charting the RNA Epigenome

Published: Monday, December 16, 2013
Last Updated: Monday, December 16, 2013
Bookmark and Share
In science, sometimes you need to dive deep to see the big picture.

Scientists at the Broad Institute have demonstrated this time and again, enabling biological discoveries by generating dense maps, such as the survey of thousands of epigenetic marks on DNA across the human genome conducted as part of the ENCODE project.

A team led by Broad researchers has recently created the first high-resolution map of another epigenetic landscape – the RNA epigenome, also known as the “epitranscriptome.” The work appears in the December 5 issue of Cell.

It’s been known since the 1970s that RNA, like DNA, can be tagged with methyl groups, in one kind of epigenetic modification. When DNA or chromatin is methylated, it can alter gene activity by making genes more or less open to being transcribed. The function of RNA methylation, however, has remained a mystery since the discovery of this phenomenon decades ago. A detailed map of epigenetic marks on mRNA across the transcriptome would allow scientists to start navigating the epitranscriptome and begin uncovering its functional role.

One reason RNA methylation is so elusive is that RNA can be tricky to work with. “When working with RNA, we often try to turn it into DNA as soon as possible, because DNA is stable and RNA is not,” said Schraga Schwartz, first author on the new study and a postdoctoral researcher in the laboratories of Broad core faculty members Eric Lander and Aviv Regev, a senior author. “But when studying epigenetic modifications of RNA, once you’ve turned it into DNA, it’s too late. The modifications are no longer going to be there. Whatever you do has to be done at the RNA level.”

Decades ago, scientists pioneered methods of using antibodies to capture modified fragments of the genetic material, but once the fragments were isolated, they had difficulty identifying them. Only with the latest advances in RNA sequencing – and more recently, methods to sequence very small amounts of RNA – could scientists begin to make real headway in the study of the epitranscriptome.

“Until recently, we just knew there was a lot of RNA methylation going on,” said Schwartz. “But nobody knew where.” He explained that better methods to map the modification of messenger RNA across the transcriptome are a first step to uncovering the modifications’ functional roles. “Where is this happening? That’s pretty much an elementary question before starting to address function.”

Before joining the Broad two years ago, Schwartz was part of a research team in Israel that developed a method to study RNA methylation by incorporating RNA sequencing.

At the Broad, Schwartz together with research associate Maxwell Mumbach further optimized the technique in several ways: by reducing the RNA fragment size used in sequencing, which increased the resolution of their map, and reducing the necessary amount of starting material. The team then joined forces with Sudeep Agarwala and Gerald Fink of the Whitehead Institute to map methylations in yeast cells, which experience peaks of RNA modification during meiosis, giving the scientists a dynamic system to study. “In yeast cells, we can really follow methylation as it comes and goes,” said Schwartz. Using yeast cells, the team was also able to shut down the enzyme that adds methyl groups to RNA, allowing them to eliminate many false positive sites.

These advances produced a high-resolution map of more than 1,300 sites of RNA methylation across the yeast transcriptome, down to the single nucleotide. The researchers also characterized the role of three proteins that make up the methylation machinery, shedding light on how these proteins are specifically regulated during meiosis. In addition, they identified a novel protein that binds specifically to methylated RNA. Future studies of these proteins should yield clues about the role of RNA methylations in the cell.

The precise regulation of methylation levels during meiosis suggests an important, still unknown, functional role for RNA methylation. Schwartz, Regev, and their fellow scientists are now pursuing studies to uncover the function of these epitranscriptomic changes, by perturbing those sites in both yeast and mammalian cells. “Our hope is that yeast can serve as a model organism for uncovering function and that a lot of this information will be applicable to humans, given the large extent of conservation that we find,” said Schwartz.

Results of this work may yield insights into disease mechanisms. For example, the top gene associated with obesity, FTO, is an enzyme involved in RNA methylation and, for this reason, obesity researchers are very interested in understanding more about the epitranscriptome.

With this new high-resolution map in hand, scientists can begin exploring the landscape of the RNA epitranscriptome. The work illustrates the importance of mapping in biological study. “You cannot navigate without a map,” explained Schwartz. “One of the most informative things one could do to discover the function of RNA methylation is to perturb specific sites, but that’s only possible once you know where the sites are.”

The field of epitranscriptomics is still relatively new, since techniques that make it feasible only arose in the last couple of years, explains Schwartz. “It’s fascinating for me to follow a field from its infancy and see how knowledge gradually accumulates over time through the joint work of an entire community.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Using Ultrasound to Improve Drug Delivery
New approach could aid in treatment of inflammatory bowel disease.
Friday, October 23, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Wednesday, March 04, 2015
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos