Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Promotes one in a Hundred of Tumours

Published: Wednesday, December 18, 2013
Last Updated: Wednesday, December 18, 2013
Bookmark and Share
Gene discovered to play a part in one per cent of all cancers.

Researchers have identified a gene that drives the development of tumours in over one per cent of all cancer patients. This is the first time that the gene CUX1 has been broadly linked to cancer development.

The team discovered that, when CUX1 is deactivated, a biological pathway is activated that increases tumour growth. Drugs that inhibit the biological pathway are currently being used in the clinic and are in development thus highlighting a potential new targeted therapy for patients with this type of cancer-causing mutation.

Around 300,000 people in the UK each year are diagnosed with cancer, and for more than 3,000 of these patients, an inactive CUX1 gene may be an underlying factor for their disease.

"Our research is a prime example of how understanding the genetic code of cancers can drive the search for targeted cancer therapies that work more effectively and efficiently," says Dr David Adams, lead author from the Wellcome Trust Sanger Institute. "This could improve the lives of thousands of people suffering from cancer."

The team used genetic data from over 7,600 cancer patients, collected and sequenced by the International Cancer Genome Constortium (ICGC) and other groups. They found that in around one per cent of the cancer genomes studied, mutations deactivated CUX1, an event associated with tumour growth.

CUX1 is mutated at a relatively low frequency, but across many different types of cancer. Because previous studies focused on genes that are mutated at a high rate in one cancer type to find cancer drivers, CUX1 was missed as a driver of cancer.

"Our work harnesses the power of combining large-scale cancer genomics with experimental genetics," says Dr Chi Wong, first author from the Wellcome Trust Sanger Institute and practising Haematologist at Addenbrooke's Hospital. "CUX1 defects are particularly common in myeloid blood cancers, either through mutation or acquired loss of chromosome 7q. As these patients have a dismal prognosis currently, novel targeted therapies are urgently needed."

"Data collected from large consortia such the ICGC, provides us with a new and broader way to identify genes that can underlie the development of cancers," says Professor David Tuveson from Cold Spring Harbor Laboratory. "We can now look at cancers as groups of diseases according to their tissues of origin and collectively examine and compare their genomes.

The team silenced CUX1 in cultured cells to understand how inactivating it might lead to the development of tumours. They found that when CUX1 is deactivated, it had a knock-on effect on a biological inhibitor, PIK3IP1, reducing its inhibitory effects. This mobilises an enzyme responsible for cell growth, phosphoinositide 3-kinase (PI3K), increasing the rate of tumour progression.

The team has already identified several dozen other genes that when mutated at a low frequency could promote cancer development. They plan to silence these genes in mice to fully understand how their inactivation may lead to cancer development and the mechanisms by which this occurs.

"Drugs that inhibit PI3K signalling are currently undergoing clinical trial," says Professor Paul Workman, Deputy Chief Executive and Head of Cancer Therapeutics at The Institute of Cancer Research, London. "This discovery will help us to target these drugs to a new group of patients who will benefit from them and could have a dramatic effect on the lives of many cancer sufferers."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Red Hair Gene Increases Cancer Mutations
Red hair gene variant drives up skin cancer mutations equivalent to that expected from 21 years of sun exposure.
Wednesday, July 13, 2016
Drug Response Predicted by Cancer Cell Lines
Large-scale study could increase success rate of developing personalised cancer treatments.
Monday, July 11, 2016
Normal Skin Accrues High Number of Mutations Associated with Cancer
Researchers used genomic sequencing to gain insights into how somatic mutations build up in normal cells before the onset of cancer, a process that is poorly understood.
Friday, May 22, 2015
Genes that Cause Pancreatic Cancer Identified by New Tool
Screening system in mice spots cancerous changes invisible to sequencing.
Thursday, December 11, 2014
Exploring Genetic Effects in Cells
A deep look into population variation in gene activity provides key insight to cell functions and disease susceptibility, researcher report.
Thursday, March 11, 2010
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!