Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Fruit Fly Cells Offer Cancer Insights

Published: Friday, January 03, 2014
Last Updated: Friday, January 03, 2014
Bookmark and Share
Researchers at the University of Exeter have shown that cells demonstrate remarkable flexibility and versatility when it comes to how they divide.

The study, published in Developmental Cell, describes a number of routes to the formation of a microtubule spindle – the tracks along which DNA moves when a cell divides in order to make two genetically identical cells.

In order to understand the phenomenon, the authors, including Biosciences researchers Professor James Wakefield, PhD student Daniel Hayward and Experimental Officer in Image Analysis, Dr. Jeremy Metz, combined highly detailed microscopy and image analysis with genetic and protein manipulation of fruit fly embryos.

The innovative research not only describes how the cell can use each pathway in a complementary way, but also that removal of one pathway leads to the cell increasing its use of the others. The researchers also identified that a central molecular complex – Augmin – was needed for all of these routes.

The authors were the first to identify that each of four pathways of spindle formation could occur in fruit fly embryos.

It was previously thought that, in order for chromosomes – packages containing DNA – to line up and be correctly separated, microtubules have to extend from specific microtubule-organising centres in the cell, called centrosomes. However, this study found that microtubules could additionally develop from the chromosomes themselves, or at arbitrary sites throughout the main body of the cell, if the centrosomes were missing.

All of these routes to spindle formation appeared to be dependent on Augmin - a protein complex responsible for amplifying the number of microtubules in the cell.

Dr. Wakefield said of the project “We have all these different spindle formation pathways working in humans. Because the cell is flexible in which pathway it uses to make the spindle, individuals who are genetically compromised in one pathway may well grow and develop normally. But it will mean they have fewer routes to spindle formation, theoretically predisposing them to errors in cell division as they age.”

The group are currently investigating cancer links in light of these findings.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Insight into the Transport Systems of Cells
The insights into the basic operation of cells was achieved using a combination of advanced live-cell imaging, molecular genetics and quantitative analysis.
Monday, March 24, 2014
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos