Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fruit Fly Cells Offer Cancer Insights

Published: Friday, January 03, 2014
Last Updated: Friday, January 03, 2014
Bookmark and Share
Researchers at the University of Exeter have shown that cells demonstrate remarkable flexibility and versatility when it comes to how they divide.

The study, published in Developmental Cell, describes a number of routes to the formation of a microtubule spindle – the tracks along which DNA moves when a cell divides in order to make two genetically identical cells.

In order to understand the phenomenon, the authors, including Biosciences researchers Professor James Wakefield, PhD student Daniel Hayward and Experimental Officer in Image Analysis, Dr. Jeremy Metz, combined highly detailed microscopy and image analysis with genetic and protein manipulation of fruit fly embryos.

The innovative research not only describes how the cell can use each pathway in a complementary way, but also that removal of one pathway leads to the cell increasing its use of the others. The researchers also identified that a central molecular complex – Augmin – was needed for all of these routes.

The authors were the first to identify that each of four pathways of spindle formation could occur in fruit fly embryos.

It was previously thought that, in order for chromosomes – packages containing DNA – to line up and be correctly separated, microtubules have to extend from specific microtubule-organising centres in the cell, called centrosomes. However, this study found that microtubules could additionally develop from the chromosomes themselves, or at arbitrary sites throughout the main body of the cell, if the centrosomes were missing.

All of these routes to spindle formation appeared to be dependent on Augmin - a protein complex responsible for amplifying the number of microtubules in the cell.

Dr. Wakefield said of the project “We have all these different spindle formation pathways working in humans. Because the cell is flexible in which pathway it uses to make the spindle, individuals who are genetically compromised in one pathway may well grow and develop normally. But it will mean they have fewer routes to spindle formation, theoretically predisposing them to errors in cell division as they age.”

The group are currently investigating cancer links in light of these findings.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Insight into the Transport Systems of Cells
The insights into the basic operation of cells was achieved using a combination of advanced live-cell imaging, molecular genetics and quantitative analysis.
Monday, March 24, 2014
Scientific News
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Symmetry is Key to Collagen
Researchers describe how symmetry may be the key to growing collagen fibres outside the body.
Lose Weight, Escape the Eight: Weight-Based Cancer Risk
IARC has identified eight additional cancer sites linked to overweight and obesity.
Unravelling the Metastatic Mechanism of Melanoma
Research has uncovered the mechanism of melanoma spreading; the findings could lead to a cure for the disease.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Precision Nanobots Target Cancerous Tumours
Researchers achieve breakthrough toward redefining anti-cancer drug administration using nanorobotics.
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Novel Therapeutic Approach for Blood Disorders
Gene editing of human blood-forming stem cells mimics a benign genetic condition that helps to overcome sickle cell disease and other blood disorders.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!