Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemical Imaging Brings Cancer Tissue Analysis into the Digital Age

Published: Wednesday, January 08, 2014
Last Updated: Wednesday, January 08, 2014
Bookmark and Share
A new method for analysing biological samples based on their chemical makeup is set to transform the way medical scientists examine diseased tissue.

When tests are carried out on a patient's tissue today, such as to look for cancer, the test has to be interpreted by a histology specialist, and can take weeks to obtain a full result.

Mass spectrometry imaging (MSI) uses technologies that reveal how hundreds or thousands of chemical components are distributed in a tissue sample. Scientists have proposed using MSI to identify tissue types for many years, but until now, no method has been devised to apply such technology to any type of tissue.

In this week's Proceedings of the National Academy of Sciences, researchers at Imperial College London have outlined a recipe for processing MSI data and building a database of tissue types. 

In MSI, a beam moves across the surface of a sample, producing a pixelated image. Each pixel contains data on thousands of chemicals present in that part of the sample. By analysing many samples and comparing them to the results of traditional histological analysis, a computer can learn to identify different types of tissue.

A single test taking a few hours can provide much more detailed information than standard histological tests, for example showing not just if a tissue is cancerous, what the type and sub-type of cancer, which can be important for choosing the best treatment. The technology can also be applied in research to offer new insights into cancer biology.

Dr Kirill Veselkov, corresponding author of the study from the Department of Surgery and Cancer at Imperial College London, said: "MSI is an extremely promising technology, but the analysis required to provide information that doctors or scientists can interpret easily is very complex. This work overcomes some of the obstacles to translating MSI's potential into the clinic. It's the first step towards creating the next generation of fully automated histological analysis."

Dr Zoltan Takats, from the Department of Surgery and Cancer at Imperial College London, said: "This technology can change the fundamental paradigm of histology. Instead of defining tissue types by their structure, we can define them by their chemical composition. This method is independent of the user - it's based on numerical data, rather than a specialist's eyes - and it can tell you much more in one test than histology can show in many tests." 

Professor Jeremy Nicholson, Head of the Department of Surgery and Cancer at Imperial College London, said: "There have been relatively few major changes in the way we study tissue sample pathology since the late 19th century, when staining techniques were used to show tissue structure. Such staining methods are still the mainstay of hospital histopathology; they have become much more sophisticated but they are slow and expensive to do and require considerable expertise to interpret.

"Multivariate chemical imaging that can sense abnormal tissue chemistry in one clean sweep offers a transformative opportunity in terms of diagnostic range, speed and cost, which is likely to impact on future pathology services and to improve patient safety."

The technology will also be useful in drug development. To study where a new drug is absorbed in the body, pharmaceutical scientists attach a radioactive label to the drug molecule, then look at where the radiation can be detected in a laboratory animal. If the label is detached when the drug is processed in the body, it is impossible to determine how and where the drug has been metabolised. MSI would allow researchers to look for the drug and any metabolic products in the body, without using radioactive labels.

The research was funded by Imperial College London's Junior Research Fellowship scheme, awarded to Dr Kirill A. Veselkov; the National Institute for Health Research Imperial Biomedical Research Centre and the European Research Council.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Switching Off Cancers' Ability to Spread
A key molecule in breast and lung cancer cells can help switch off the cancers' ability to spread around the body.
Tuesday, March 22, 2016
‘Simple Rules’ Calculate Ovarian Cancer Risk
Scientists have formulated a system that uses ultrasound images to accurately work out the likelihood of an ovarian growth being cancerous.
Wednesday, January 20, 2016
New Technique Negotiates Neuron Jungle To Target Source Of Parkinson’s Disease
Researchers from Imperial College London and Newcastle University believe they have found a potential new way to target cells of the brain affected by Parkinson’s disease.
Wednesday, September 23, 2015
New Drug Target Identified for Serious Heart and Lung Condition
A gene has been identified that sheds new light on a potentially fatal heart and lung condition and could lead to a new treatment.
Friday, August 14, 2015
Gene Therapy for Cystic Fibrosis Shows Encouraging Trial Results
A therapy that replaces the faulty gene responsible for cystic fibrosis in patients' lungs has produced encouraging results in a major UK trial.
Friday, July 03, 2015
Researchers Develop New Breath Test to Diagnose Oesophageal and Gastric Cancer
Test will now be tested in a larger trial involving three hospitals in London.
Tuesday, June 23, 2015
Imperial Researchers Win Health Foundation Grant for Cancer Innovation Study
Each project will receive over £450,000 of funding to support the research.
Tuesday, May 26, 2015
Engineering Bacteria for Vaccine Delivery
An eight million Euro project has been launched with the aim of engineering bacteria to deliver vaccines against antibiotic-resistant infections.
Monday, May 18, 2015
Diet Swap has Dramatic Effects on Colon Cancer Risk for Americans and Africans
New study confirms that a high fibre diet can substantially reduce risk.
Saturday, May 02, 2015
Protein That Boosts Immunity to Viruses and Cancer Discovered
Researchers now developing a gene therapy designed to boost the infection-fighting cells.
Saturday, April 18, 2015
New Test can Help Doctors Choose Best Treatment for Ovarian Cancer
ADNEX discriminate between benign and malignant tumours with a high level of accuracy.
Friday, October 17, 2014
New Cancer Drug To Begin Trials In Multiple Myeloma Patients
Scientists at Imperial College London have developed a new cancer drug which they plan to trial in multiple myeloma patients by the end of next year.
Tuesday, October 14, 2014
First Pictures of BRCA2 Protein Show How it Works to Repair DNA
Researchers purified the protein and used electron microscopy to reveal its structure.
Thursday, October 09, 2014
Protein ‘Map’ Could Lead to Potent New Cancer Drugs
Findings will help scientists to design drugs that could target NMT enzyme.
Saturday, September 27, 2014
What Lies Behind the Death of Stem Cells
Researchers have identified key processes that control stem cell survival, providing insights that could improve their use in medicine.
Friday, September 19, 2014
Scientific News
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
UTSW Creates Nanoparticles That Target Lung Cancer Cells
Researchers at UTSW have developed a synthetic polymers that could deliver nucleic acid drugs while possessing enough structural diversity to discover cancer cell-specific nanoparticles.
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!