Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Nuevolution Enter Drug Discovery Collaboration with ICR and CRT

Published: Thursday, January 23, 2014
Last Updated: Wednesday, January 22, 2014
Bookmark and Share
International deal to screen potential cancer drugs using DNA ‘barcodes’.

The Institute of Cancer Research (ICR), London, Cancer Research Technology (CRT), London and Nuevolution A/S, Copenhagen have entered into a drug discovery collaboration to identify novel lead candidates for cancer treatment.

Researchers will use Nuevolution’s screening technology, Chemetics®, to screen libraries each of millions of DNA-tagged compounds to identify those that act on a key protein in the stress response pathway, which has an important role in cancer cell survival and resistance to cancer treatments. This screening technology allows potent drug leads to be identified quickly, accurately and from very large and complex compound mixtures.

The three-way deal between the ICR, Nuevolution and CRT, the commercial arm of Cancer Research UK, builds on an existing collaboration between CRT and Nuevolution, which aims to identify drug leads that block the activity of several challenging cancer targets of therapeutic interest.

Under the new deal, the Cancer Research UK Cancer Therapeutics Unit at the ICR and Nuevolution will collaborate to screen a key target within the stress response pathway.

Researchers from the Cancer Research UK Cancer Therapeutics Unit at the ICR will provide detailed insights and scientific expertise on the specific stress pathway target as well as their extensive experience in cancer drug discovery and development.

Nuevolution will provide its proprietary Chemetics® technology, screening expertise and medicinal chemistry expertise to optimize drug candidates.

The parties have an option to co-develop promising compounds arising from this collaboration. The agreement is open-ended and allows for the screening of additional targets.

Professor Paul Workman, Deputy Chief Executive of The Institute of Cancer Research, London, and Director of the Cancer Research UK Cancer Therapeutics Unit said: “The stress response pathway plays a key role in allowing cancer cells to survive and to develop drug resistance – so it is increasingly being seen as an exciting source of future drug targets. But for some of these targets it is technically very challenging to identify prototype small molecule drugs. The new collaboration between the ICR, Cancer Research Technology and Nuevolution will allow us to screen very rapidly and efficiently for compounds that are able to bind to a key component of the stress response pathway that we have identified as especially important, and could help us to identify new drug candidates far more quickly than would otherwise be the case. By working in partnership we can accelerate the potential for patient benefit.”

Dr Phil L’Huillier, Cancer Research Technology’s director of business management, said: “Our role is to build global industry-academic partnerships to bring the best technologies and expertise together to develop new treatments for cancer patients - ultimately saving more lives from the disease. This exciting international collaboration combines global expertise and resources to exploit the untapped biology of the stress response pathway. This work will accelerate the identification of potential new cancer drugs though an innovative approach to scan for DNA ‘barcode’ tags on promising new molecules - extending the existing relationship between Nuevolution and CRT.”

Thomas Franch, CSO, Nuevolution A/S said: “We are delighted to enter this project and to expand our present collaborations with ICR and CRT. The project will address a highly challenging target for which small molecule compounds is not easily identified using conventional screening methods. We hope to identify lead compounds using the Chemetics® technology and look forward to moving this exciting project forward together with the world-leading team at ICR."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Major Study Links Gene to Drug Resistance in Testicular Cancer
Researchers used a genetic technique called whole-exome sequencing to examine tumour samples.
Friday, January 23, 2015
Study of 'Sister' Stem Cells Uncovers New Cancer Clue
Scientists have used a brand new technique for examining individual stem cells to uncover dramatic differences in the gene expression levels between apparently identical ‘sister’ pairs.
Monday, September 30, 2013
Researchers Say Studying the Caterpillar May Help us Understand Cancer
How researchers are beginning to exploit the mysterious phenomenon of epigenetics.
Friday, July 05, 2013
New Breast Cancer Test will Help More Women Avoid Unnecessary Chemotherapy
A new genetic test will help doctors better identify those women who should be considered for chemotherapy, and those who can avoid it.
Friday, July 05, 2013
Next-Generation “Epigenetic” Cancer Pill Shown to be Safe
Scientists have shown that a brand new type of cancer pill that exploits the emerging field of epigenetics is safe for human use, according to a Phase I trial reported today in Clinical Cancer Research.
Wednesday, May 02, 2012
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos