Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Find that Estrogen Promotes Blood-Forming Stem Cell Function

Published: Monday, January 27, 2014
Last Updated: Monday, January 27, 2014
Bookmark and Share
Research could provide potential opportunities for improved treatment of blood cancers and enhance the effectiveness of chemotherapy.

Scientists have known for years that stem cells in male and female sexual organs are regulated differently by their respective hormones. In a surprising discovery, researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) and Baylor College of Medicine have found that stem cells in the blood-forming system - which is similar in both sexes - also are regulated differently by hormones, with estrogen proving to be an especially prolific promoter of stem cell self-renewal.

The research, published in Nature, raises several intriguing possibilities for further investigation that might lead to improved treatments for blood cancers and increased safety and effectiveness of chemotherapy.

Before the finding, blood-forming stem cells were thought to be regulated similarly in both males and females, according to the paper’s senior author, Dr. Sean Morrison, Director of CRI, Professor of Pediatrics, and the Mary McDermott Cook Chair in Pediatric Genetics at UT Southwestern Medical Center.

However, while working in Dr. Morrison’s laboratory as postdoctoral fellows, Dr. Daisuke Nakada, the first and co-corresponding author of the study, and Dr. Hideyuki Oguro discovered that blood-forming stem cells divide more frequently in females than in males due to higher estrogen levels.

The research, conducted using mice, demonstrated that the activity of blood-forming stem cells was regulated by systemic hormonal signals in addition to being regulated by local changes within the blood-forming system.

“This discovery explains how red blood cell production is augmented during pregnancy,” said Dr. Morrison. “In female mice, estrogen increases the proliferation of blood-forming stem cells in preparation for pregnancy. Elevated estrogen levels that are sustained during pregnancy induce stem cell mobilization and red cell production in the spleen, which serves as a reserve site for additional red blood cell production.”

The study involved treating male and female mice over a period of several days with amounts of estrogen needed to achieve a level consistent with pregnancy. When an estrogen receptor that is present within blood-forming stem cells was deleted from those cells, they were no longer able to respond to estrogen, nor were they able to increase red blood cell production. The results demonstrate that estrogen acts directly on the stem cells to increase their proliferation and the number of red blood cells they generate.

“If estrogen has the same effect on stem cells in humans as in mice, then this effect raises a number of possibilities that could change the way we treat people with diseases of blood cell-formation,” said Dr. Morrison. “Can we promote regeneration in the blood-forming system by administering estrogen? Can we reduce the toxicity of chemotherapy to the blood-forming system by taking into account estrogen levels in female patients? Does estrogen promote the growth of some blood cancers? There are numerous clinical opportunities to pursue.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Saturday, October 10, 2015
UT Southwestern Biochemist Receives NIH Early Independence Award
Dr. William Israelsen studies on hibernation may aid the fight against cancer.
Wednesday, October 07, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Scientists Identify New and Beneficial Function of Endogenous Retroviruses
Researchers found that ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos