Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Find that Estrogen Promotes Blood-Forming Stem Cell Function

Published: Monday, January 27, 2014
Last Updated: Monday, January 27, 2014
Bookmark and Share
Research could provide potential opportunities for improved treatment of blood cancers and enhance the effectiveness of chemotherapy.

Scientists have known for years that stem cells in male and female sexual organs are regulated differently by their respective hormones. In a surprising discovery, researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) and Baylor College of Medicine have found that stem cells in the blood-forming system - which is similar in both sexes - also are regulated differently by hormones, with estrogen proving to be an especially prolific promoter of stem cell self-renewal.

The research, published in Nature, raises several intriguing possibilities for further investigation that might lead to improved treatments for blood cancers and increased safety and effectiveness of chemotherapy.

Before the finding, blood-forming stem cells were thought to be regulated similarly in both males and females, according to the paper’s senior author, Dr. Sean Morrison, Director of CRI, Professor of Pediatrics, and the Mary McDermott Cook Chair in Pediatric Genetics at UT Southwestern Medical Center.

However, while working in Dr. Morrison’s laboratory as postdoctoral fellows, Dr. Daisuke Nakada, the first and co-corresponding author of the study, and Dr. Hideyuki Oguro discovered that blood-forming stem cells divide more frequently in females than in males due to higher estrogen levels.

The research, conducted using mice, demonstrated that the activity of blood-forming stem cells was regulated by systemic hormonal signals in addition to being regulated by local changes within the blood-forming system.

“This discovery explains how red blood cell production is augmented during pregnancy,” said Dr. Morrison. “In female mice, estrogen increases the proliferation of blood-forming stem cells in preparation for pregnancy. Elevated estrogen levels that are sustained during pregnancy induce stem cell mobilization and red cell production in the spleen, which serves as a reserve site for additional red blood cell production.”

The study involved treating male and female mice over a period of several days with amounts of estrogen needed to achieve a level consistent with pregnancy. When an estrogen receptor that is present within blood-forming stem cells was deleted from those cells, they were no longer able to respond to estrogen, nor were they able to increase red blood cell production. The results demonstrate that estrogen acts directly on the stem cells to increase their proliferation and the number of red blood cells they generate.

“If estrogen has the same effect on stem cells in humans as in mice, then this effect raises a number of possibilities that could change the way we treat people with diseases of blood cell-formation,” said Dr. Morrison. “Can we promote regeneration in the blood-forming system by administering estrogen? Can we reduce the toxicity of chemotherapy to the blood-forming system by taking into account estrogen levels in female patients? Does estrogen promote the growth of some blood cancers? There are numerous clinical opportunities to pursue.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
UT Southwestern Scientists Synthesize Nanoparticles
Synthetic nanoparticles to deliver tumor-suppressing therapies to damaged livers.
Wednesday, January 27, 2016
Tumor-suppressing Gene Works by Restraining Mobile Genetic Elements
Findings from the study leads to new ways of diagnosing and treating cancer.
Saturday, January 23, 2016
UTSW Researchers Identifies How Drugs Alter Pancreatic Cancer Cells
The findings were published in Cell Reports.
Friday, January 22, 2016
Researchers Find a Small Protein that Plays a Big Role in Heart Muscle Contraction
New protein, DWORF, stimulates a calcium-ion pump that controls muscle contraction.
Friday, January 15, 2016
UT Southwestern Scientists Discover a New Role for RNA
Safeguarding chromosome number in human cells, with implications for cancer biology.
Wednesday, December 30, 2015
UT Southwestern Scientist Honored as Rising Star in Texas Research
Dr. Joshua Mendell selected as the recipient of the 2016 Edith and Peter O’Donnell Award in Medicine.
Saturday, December 12, 2015
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Saturday, October 10, 2015
UT Southwestern Biochemist Receives NIH Early Independence Award
Dr. William Israelsen studies on hibernation may aid the fight against cancer.
Wednesday, October 07, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!