Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NCI Launches Trial to Assess the Utility of Genetic Sequencing to Improve Patient Outcomes

Published: Saturday, February 01, 2014
Last Updated: Saturday, February 01, 2014
Bookmark and Share
Trial could identify patient sub-groups that are likely to benefit from certain treatments.

A pilot trial to assess whether assigning treatment based on specific gene mutations can provide benefit to patients with metastatic solid tumors is being launched this month by the National Cancer Institute (NCI), part of the National Institutes of Health.

The Molecular Profiling based Assignment of Cancer Therapeutics, or M-PACT, trial is one of the first to use a randomized trial design to assess if assigning treatment based on genetic screening can improve the rate and duration of response in patients with advanced solid tumors. A trial in which patients are randomly assigned to various treatment options is the gold-standard method for determining which treatment option is best.

Researchers hope that in addition to the knowledge gained from the trial about assigning therapy based on results of genetic sequencing of tumors, this trial could identify patient sub-groups that are likely to benefit from certain treatments and result in new treatments being developed quickly for some cancers. This could ultimately lead to smaller, more definitive clinical trials, which would be helpful to clinicians and patients in terms of cost and time.

“Patients will have their tumors genetically screened and if a pre-defined mutation is found, they will receive treatment with targeted agents,” said Shivaani Kummar, M.D., head of NCI’s Developmental Therapeutics Clinic and the principal investigator of the trial. “What we don’t know, however, is whether using this approach to assign targeted treatments is really effective at providing clinical benefit to patients, as most tumors have multiple mutations and it’s not always clear which mutation to target and which agent is most likely to provide maximal benefit. This study hopes to address some of these questions in the context of a prospective, randomized trial.”

Very few types of tumors have just one mutated gene that triggers cancer progression. Once a gene is mutated, it can lead to the activation of multiple pathways, resulting in disease progression and potentially requiring multiple interventions. Therefore, NCI’s M-PACT trial is designed to determine whether people with specific mutations that have been demonstrated in laboratory systems to affect drug effectiveness will benefit from a specifically chosen targeted intervention and if these interventions lead to better outcomes.

For NCI’s M-PACT study, after screening hundreds of people, 180 patients with advanced refractory solid tumors (those resistant to standard therapy) will be enrolled based on their genetic profile. During the screening process, samples of the tumors will be genetically sequenced to look for a total of 391 different mutations in 20 genes that are known to affect the utility of targeted therapies. If mutations of interest are detected, using a molecular sequencing protocol for tumor biopsy samples evaluated by the U.S. Food and Drug Administration, those patients will be enrolled in the trial and randomly assigned to one of two treatment arms to receive one of the four treatment regimens that are part of this study.

To ensure that patients receive the best treatment already known to provide benefit, patients with specific tumor types should have received certain therapies prior to being enrolled in NCI’s M-PACT. For instance:

• Patients with melanoma whose tumors have mutations in the V600E region of the BRAF gene should have received and progressed on a specific BRAF inhibitor therapy to be eligible for NCI’s M-PACT trial.
• Patients with lung cancer should have had their tumors tested for the presence of EGFR and ALK gene mutations, and, if mutations were detected, they should have received and progressed on therapies targeting EGFR or ALK, respectively.

Patients with all types of solid tumors will be considered for trial eligibility. For the randomization, patients will be assigned to Arm A (they will receive a treatment regimen prospectively identified to target their specific mutation or relevant pathway) or Arm B (they will receive a treatment regimen not prospectively identified to target their specific mutation or relevant pathway).

Patients in Arm B will have the option to cross over to Arm A to receive therapy identified to target their specific mutation or relevant pathway if their disease progresses on their initial study treatment. As of January 2014, the study is open for patient accrual. Clinicians hope that they can rapidly enroll patients and report results of their findings by 2017.

“We believe that this study will aid patients in the trial that will be conducted initially at the NCI, and subsequently expanded to clinical trials sites participating in the NCI-supported Early Therapeutics Clinical Trials Network,” said James Doroshow, M.D., NCI deputy director for clinical and translational research. “We also believe that M-PACT can be a model for trials nationwide, particularly those that employ genetically-driven treatment selection approaches in their design.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Lipid Nanoparticle Therapeutic Treats Ebola in Monkeys
A newly designed agent was effective in treating monkeys infected with a deadly Ebola virus strain.
Wednesday, May 06, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
NIH Study Finds Genetic Link for Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Friday, April 17, 2015
Novel Approach Gives Insights Into Tumor Development
Scientists used a powerful new technique to turn off all the genes in mouse lung cancer cells and test how they affect tumor growth and metastasis.
Tuesday, March 24, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Range of Molecular Alterations in Head and Neck Cancers Uncovered
TCGA tumor genome sequencing analyses offer new insights into the effects of HPV and smoking, and find genomic similarities with other cancers.
Thursday, January 29, 2015
NIH Researchers Tackle Thorny Side of Gene Therapy
Pre-clinical studies in mice reveal ways to reduce cancer risk with modified treatment.
Wednesday, January 21, 2015
NIH Exceptional Responders to Cancer Therapy Study Launched
Study to investigate the molecular factors of tumors associated with exceptional treatment responses of cancer patients to drug therapies.
Friday, September 26, 2014
NIH Announces the Launch of 3 Integrated Precision Medicine Trials
ALCHEMIST is for patients with certain types of early-stage lung cancer.
Tuesday, August 26, 2014
NIH Launches 3 Integrated Precision Medicine Trials
Findings to answer questions about addition of targeted therapies in earlier stage disease and help understand the prevalence and natural history of these genomic changes in earlier stage lung cancer.
Wednesday, August 20, 2014
GTEx Project to Expand Functional Studies of Genomic Variation
Larger set of human tissues to be analyzed to contribute to a database and tissue bank that researchers can use to study how genomic variants influence gene activity.
Wednesday, August 06, 2014
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!