Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Trial of Personalized Cancer Treatment Begins in Oxford

Published: Tuesday, March 18, 2014
Last Updated: Tuesday, March 18, 2014
Bookmark and Share
Phase I trial in Oxford will investigate a new drug, called CXD101.

The first human trial of a pioneering personalized cancer treatment developed at Oxford University will begin this week, with the potential to tackle a wide range of late-stage cancers.

A major challenge in drug development is that all cancer patients respond differently to treatment, making it difficult to know how best to treat each patient. For the first time, a phase I trial in Oxford will investigate not only a new drug, called CXD101, but also a new test to predict which patients could be successfully treated by this class of drug.

'When patients' cancers do not respond to a treatment, this can cost tens of thousands of pounds and cause patients to suffer side effects for nothing,' said lead researcher Professor Nick La Thangue of Oxford University's Department of Oncology. 'Personalized medicine promises to prevent this by predicting how well a patient will respond to a drug before administering it and this is exactly what this trial will do. This is really the shape of things to come, and avoids the problem of testing drugs on patients who have little chance of benefiting from the treatment.'

The drug and associated test were first developed at Oxford University and are now being developed by spin-outs Celleron Therapeutics and Oxford Cancer Biomarkers, founded by Professors La Thangue and David Kerr and set up by the University's technology transfer company Isis Innovation. The new clinical trial is being carried out by Oxford University Hospitals NHS Trust.

The test measures levels of a protein called HR23B that could determine the effectiveness of CXD101 and similar drugs. The trial will involve 30-40 cancer patients, the first set of whom will be given increasing doses of CXD101 to determine the most effective dose. The second cohort of patients will then be tested for HR23B, and those with high levels of the protein will be treated with the best dose of CXD101.

CXD101 is a next-generation histone deacetylase (HDAC) inhibitor, a class of drug that kills cancer cells by blocking the vital functions of HDAC enzymes. HDAC enzymes are important for cell multiplication, migration and survival, so blocking them can stop tumours from growing and spreading, and even kill cancer cells entirely.

'HDAC inhibitors have had limited success in the past, but CXD101 works in a completely new way and has great potential to treat many different cancers,' said Professor La Thangue. 'Our previous research suggests that high levels of the HR23B protein make tumours more vulnerable to HDAC inhibitors, so we will now be putting this into practice to identify the patients who are most likely to benefit from CXD101. Any cancer could be high in HR23B, from breast cancers to blood cancers, so we are screening a broad range of patients to identify anyone who might benefit.'

The trial is a unique collaboration between Oxford University, Oxford University Hospitals NHS Trust, Celleron Therapeutics, Oxford Cancer Biomarkers and the ECMC (Experimental Cancer Medicine Centre) network. The Oxford ECMC, jointly funded by Cancer Research UK and the National Institute for Health Research, is led by Mark Middleton, Professor of Experimental Cancer Medicine at Oxford University's Department of Oncology, clinical lead for the CXD101 trial.

'This trial marks a lot of firsts - the first time the hospital has sponsored a trial of a new agent, the first time we will trial a predictive test along with a new drug, the first time CXD101 will be taken by patients, and even the development of the trial is new,' said Professor Middleton. 'We are working closely with the spin-outs to deliver the trial using a new model that allows the companies to set up the trial faster. This risk-sharing model encourages innovation, accelerates drug development and will bring benefits to UK plc in the long run.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Eating Organic Food Doesn't Lower Overall Cancer Risk
Women who always or mostly eat organic foods have the same likelihood of developing cancer as women who eat conventionally produced foods.
Tuesday, April 01, 2014
Scientists Break Blood-Brain Barrier to Allow Cancer Drugs In
Oxford University scientists have found a way of delivering drugs more effectively to treat life-threatening cancers that have spread to the brain.
Tuesday, October 15, 2013
'Jekyll and Hyde' Protein Offers New Route to Cancer Drugs
The mood changes of a 'Jekyll-and-Hyde' protein, which sometimes boosts tumour cell growth and at other times suppresses it, have been explained.
Friday, September 27, 2013
Sex Hormones Linked to Breast Cancer Risk in Women Under 50
Premenopausal women with high levels of sex hormones in their blood have an increased risk of breast cancer, though further research is needed to understand this link.
Wednesday, July 24, 2013
One-two Combination Floors Cancer
A new tag-team approach to combating a type of skin cancer is showing early promise in the lab.
Wednesday, June 26, 2013
46 Gene Sequencing Test for Cancer Patients on the NHS
The first multi-gene test that can help predict cancer patients' responses to treatment using the latest DNA sequencing techniques has been launched in the NHS.
Wednesday, March 27, 2013
Rare Genetic Faults Identified in Families with Bowel Cancer
The findings are published in the journal Nature Genetics.
Friday, January 04, 2013
Genetic Cause of Insulin Sensitivity Offers Diabetes Clues
The first single gene cause of increased sensitivity to the hormone insulin has been discovered by a team of Oxford University researchers.
Friday, September 14, 2012
Probing What Fuels Cancer
Cancer is often described as a genetic disease, after all the transition a cell goes through in becoming cancerous tends to be driven by changes to the cell's DNA.
Monday, August 06, 2012
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.
How to Control Shape, Structure of DNA and RNA
Researchers have used computational modelling to shed light on precisely how charged gold nanoparticles influence the structure of DNA and RNA.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos