Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Insight into the Transport Systems of Cells

Published: Monday, March 24, 2014
Last Updated: Monday, March 24, 2014
Bookmark and Share
The insights into the basic operation of cells was achieved using a combination of advanced live-cell imaging, molecular genetics and quantitative analysis.

Research led by Gero Steinberg, Professor of Cell Biology and Director of the Bioimaging Centre at the University of Exeter, features in both the latest editions of the Journal of Cell Biology 

Professor Steinberg and his colleagues have investigated how cells undertake long range transport within polarised cells, such as those in the nervous system of humans.  Speaking about the research, Professor Steinberg said “ We want to understand how cells can transport and distribute cargo within cells.  This is vital if we are to understand how nerve cells operate, for instance, or how pathogenic fungi are able to cause diseases".

Cells have transport networks composed of long microtubules that act like motorways for long distance transport, which uses special motor proteins to delivery cargo to different parts of cells, such as the nucleus, organelles, or for secretion outside of a cell.  Prof. Steinberg has used the model fungusUstilago mayidis to identify the how motor proteins are regulated so they can carry out transport in opposite directions along microtubules. 

In the latest article, the researchers found that a special protein called ‘Hook’ controls the attachment of two different motors, dynein and kinesin-3, to cargo, thereby controlling the transport direction of the organelles. Hook proteins have previously been implicated in numerous human diseases, but the reason for this was unknown.  The Exeter research now reveals why they are so important in the operation of neurons and cells within the brain.

Speaking about the research, Professor Nick Talbot, Deputy Vice-Chancellor for Research said: “This research is impressive because it integrates the latest advances in bio-imaging so we can look at the operation of motor proteins in living cells in un-paralleled detail.  Prof. Steinberg’s group then collaborate with mathematicians to model the movement and activity of these motors and their key regulators, such as Hook.  It is this combination of skills which allows such important and fundamental new discoveries to be made.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fruit Fly Cells Offer Cancer Insights
Researchers at the University of Exeter have shown that cells demonstrate remarkable flexibility and versatility when it comes to how they divide.
Friday, January 03, 2014
Scientific News
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
RNAi Activated in Response to Influenza
Discovery could lead to better ways of combating serious infections, including Ebola and Zika.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Turning Off Asthma Attacks
Researchers discover a critical cellular “off” switch for the inflammatory immune response that causes asthma attacks.
New Strategy May Drop Cancer’s Guard
Scientists eye ways to deconstruct tumors’ protective wall with current diabetes drug.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Smart Patch Releases Blood Thinners When Needed
Researchers have developed a smart patch that activelly monitors a patient's blood and releases blood thinning drugs when necessary.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!