Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Insight into the Transport Systems of Cells

Published: Monday, March 24, 2014
Last Updated: Monday, March 24, 2014
Bookmark and Share
The insights into the basic operation of cells was achieved using a combination of advanced live-cell imaging, molecular genetics and quantitative analysis.

Research led by Gero Steinberg, Professor of Cell Biology and Director of the Bioimaging Centre at the University of Exeter, features in both the latest editions of the Journal of Cell Biology 

Professor Steinberg and his colleagues have investigated how cells undertake long range transport within polarised cells, such as those in the nervous system of humans.  Speaking about the research, Professor Steinberg said “ We want to understand how cells can transport and distribute cargo within cells.  This is vital if we are to understand how nerve cells operate, for instance, or how pathogenic fungi are able to cause diseases".

Cells have transport networks composed of long microtubules that act like motorways for long distance transport, which uses special motor proteins to delivery cargo to different parts of cells, such as the nucleus, organelles, or for secretion outside of a cell.  Prof. Steinberg has used the model fungusUstilago mayidis to identify the how motor proteins are regulated so they can carry out transport in opposite directions along microtubules. 

In the latest article, the researchers found that a special protein called ‘Hook’ controls the attachment of two different motors, dynein and kinesin-3, to cargo, thereby controlling the transport direction of the organelles. Hook proteins have previously been implicated in numerous human diseases, but the reason for this was unknown.  The Exeter research now reveals why they are so important in the operation of neurons and cells within the brain.

Speaking about the research, Professor Nick Talbot, Deputy Vice-Chancellor for Research said: “This research is impressive because it integrates the latest advances in bio-imaging so we can look at the operation of motor proteins in living cells in un-paralleled detail.  Prof. Steinberg’s group then collaborate with mathematicians to model the movement and activity of these motors and their key regulators, such as Hook.  It is this combination of skills which allows such important and fundamental new discoveries to be made.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fruit Fly Cells Offer Cancer Insights
Researchers at the University of Exeter have shown that cells demonstrate remarkable flexibility and versatility when it comes to how they divide.
Friday, January 03, 2014
Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
'Junk' DNA Plays Role in Preventing Breast Cancer
Supposed "junk" DNA, found in between genes, plays a role in suppressing cancer, according to new research by Universities of Bath and Cambridge.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!