Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Some Long Non-Coding RNAs Are Conventional After All

Published: Monday, April 07, 2014
Last Updated: Monday, April 07, 2014
Bookmark and Share
Researchers have used ribosome profiling to identify several hundred long non-coding RNAs that may give rise to small peptides.

Not so long ago researchers thought that RNAs came in two types: coding RNAs that make proteins and non-coding RNAs that have structural roles. Then came the discovery of small RNAs that opened up whole new areas of research. Now researchers have come full circle and predicted that some long non-coding RNAs can give rise to small proteins that have biological functions. 

“We have identified hundreds of open reading frames in the long non-coding RNAs of humans and zebrafish that may give rise to functional proteins using ribosome profiling,” says Antonio Giraldez, one of the lead authors of the study and a professor at Yale University School of Medicine in the United States.

Ribosome profiling allows scientists to measure how much RNA is translated into protein. The method allows direct quantification of the messenger RNA fragments protected by the ribosome after digestion with the enzyme nuclease. The nucleases destroy the bonds between the exposed nucleotides that make up RNA and which are not protected by the protein-making machinery of the ribosome. What is left behind is a measurable amount of RNA destined to produce protein. 

The researchers were able to visualize translation and the movement of the ribosome every three nucleotides, which corresponds to the size of each codon on the RNA producing an amino acid. This was possible by combining the high resolution of ribosome profiling with a bioinformatic tool developed in the Giraldez laboratory called ORFScore.

“Crucial to our study was the parallel use of a second computational method that relies on a bioinformatic tool called micPDP,” says Giraldez. “micPDP revealed that the RNAs identified by ribosome profiling correspond to peptides that have been conserved over the course of evolution. This strongly suggests that these genes encode proteins that have specific functions in these animals.”

As a further validation of their method, the scientists went one step further and used mass spectrometry to detect and characterize almost 100 of the peptides coded by the RNAs.

Until recently, long non-coding RNAs were thought to be restricted to the more mundane but nonetheless important structural roles that are essential to support the function of the cell. “We think the main reason that these small functional peptides have been missed in earlier studies is due to the assumptions that have to be made when assigning functions to large numbers of genes,” says EMBO Member Nikolaus Rajewsky, Professor at the Max-Delbrück-Center in Berlin, Germany, Director of the Berlin Institute for Medical Systems Biology and one of the lead authors whose team contributed the micPDP computational method to identify conserved micropeptides. “Short open reading frames are so numerous that by design standard genome annotation methods have to filter out short open reading frames.”

There are many short peptides in nature, for example neuropeptides or insulin, but unlike the small peptides arising from long non-coding RNAs they are produced as larger preproteins that need to be trimmed to their final size. The first reports of activities for the small peptides produced by long non-coding RNAs have already begun to emerge. Schier and colleagues recently reported in Science1 a small peptide that functions as a signal to promote cell motility in the early fish embryo. The aptly named Toddler protein arises from long non-coding RNAs and acts as an activator of a G protein coupled receptor, one of the essential signaling molecules in the cell. Earlier work showed that a long non-coding RNA produced by the tarsal-less/polished rice/mille-pattes gene encodes small peptides that control epithelial morphogenesis in Drosophila and the flour beetle Tribolium.

“Our identification of hundreds of translated small open reading frames significantly expands the set of micropeptide-encoding vertebrate genes providing an entry point to investigate their real life functions,” says Giraldez.

“The peptide predictions reported in these studies are tantalizing, but this is just the first step. Things should get really interesting as the community explores the functions of the predicted peptides in vivo,” says Stephen M. Cohen, Professor at the Institute of Molecular and Cell Biology in Singapore who is not an author of the paper. “I imagine that we’ll be hearing a lot about this new peptide world in the years to come.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Altered Metabolism of Four Compounds Drives Glioblastoma Growth
Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!