Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Identifies Growth Factor Receptors That May Prompt the Spread of Lung Cancer

Published: Thursday, April 10, 2014
Last Updated: Thursday, April 10, 2014
Bookmark and Share
Preventing lung cancers from metastasizing to other parts of the body could provide benefit for patients against the leading cause of cancer death.

Two cell surface receptors might be responsible for the most common form of lung cancer spreading to other parts of the body, according to a study led by the Translational Genomics Research Institute (TGen).

The hepatocyte growth factor receptor (HGFR/MET) and fibroblast growth factor-inducible 14 (FN14) are proteins associated with the potential spread of non-small cell lung cancer (NSCLC), according to the TGen study published online April 8 by the scientific journal Clinical & Experimental Metastasis.

NSCLC represents more than 85 percent of all lung cancers, which this year will kill an estimated 159,000 Americans, making it by far the leading cause of cancer-related death. It has a 5-year survival rate less than 10 percent.

The invasive and metastatic nature of NSCLC contributes to this high mortality rate, and so finding the cause of this potential to spread is key to helping patients survive.

Therapies targeting MET and FN14 are in clinical development, which could lead to treatments that could help halt or slow the spread of this lung cancer.

"As the metastatic phenotype is a major cause of lung cancer mortality, understanding and potentially targeting these pathways may reduce the high mortality rate in advanced lung cancer," said Dr. Timothy Whitsett, an Assistant Professor in TGen's Cancer and Cell Biology Division, and the study's lead author.

Significantly, the TGen study found that MET and FN14 were elevated in metastatic tumors compared to primary lung tumors and suppression of MET activation or FN14 expression reduced tumor cell invasion.    

"The elevation of these receptors in metastatic disease opens the possibility for therapeutic intervention," said Dr. Nhan Tran, an Associate Professor in TGen's Cancer and Cell Biology Division, and the study's senior author.

Dr. Glen Weiss, Co-Unit Head of TGen's Lung Cancer Research Laboratory and Director of Clinical Research at Cancer Treatment Centers of America at Western Regional Medical Center, said, "This study identifies some targets that already have drugs in clinical trials, and helps put them into context for what might be a rational drug development approach for the treatment of this deadly cancer."

Other institutes that assisted with this study are: the University of Arizona; St. Joseph's Hospital and Medical Center; and Humboldt Medical Specialists.

The study, FN14 expression correlates with MET in NSCLC and promotes MET-driven cell invasion, was funded by the National Institutes of Health, and grants from the St. Joseph's Foundation and the American Lung Association.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

TGen Seek Pancreatic-Cancer Patients for Trial
The Translational Genomics Research Institute is seeking 34 pancreatic-cancer patients at four sites around the country to participate in clinical trials that officials hope will bring them closer to a cure.
Thursday, December 01, 2011
Informatics Student Implements Real World Cancer Research
Alexis Christoforides, a first year Ph.D. candidate at Arizona State University’s Department of Biomedical Informatics, and full-time employee at the Translational Genomics Institute (TGen), renders class work to real world application.
Tuesday, November 29, 2011
TGen and Genomic Health Inc. Discover Genes Affecting Cancer Drug
A laboratory study indicates the need for more clinical research into the mechanisms that influence the activity of oxaliplatin.
Thursday, January 13, 2011
TGen Finds Therapeutic Targets for Rare Cancer in Children
RNAi screening used for the first time to study Ewing’s sarcoma.
Monday, September 06, 2010
TGen Finds Protein Inhibitor Revives Chemotherapy for Ovarian Patients
Scientific paper describes how the inhibition of a protein, CHEK1, may be an effective element to incorporate into therapies for women with ovarian cancer.
Monday, July 12, 2010
TGen-VARI-SHC Research Helps Predict Success with Cancer Drugs
MicroRNA study provides biomarker for survival in small cell lung cancer.
Thursday, June 17, 2010
Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
'Junk' DNA Plays Role in Preventing Breast Cancer
Supposed "junk" DNA, found in between genes, plays a role in suppressing cancer, according to new research by Universities of Bath and Cambridge.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!