Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

‘Nanodaisies’ Deliver Drug Cocktail to Cancer Cells

Published: Thursday, May 29, 2014
Last Updated: Thursday, May 29, 2014
Bookmark and Share
The daisy-shaped, nanoscale structures are made predominantly of anti-cancer drugs and are capable of introducing a “cocktail” of multiple drugs into cancer cells.

The researchers are all part the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill.

 “We found that this technique was much better than conventional drug-delivery techniques at inhibiting the growth of lung cancer tumors in mice,” says Dr. Zhen Gu, senior author of the paper and an assistant professor in the joint biomedical engineering program. “And based on in vitro tests in nine different cell lines, the technique is also promising for use against leukemia, breast, prostate, liver, ovarian and brain cancers.”

Zhen-Gu-Nanoflower-250.jpgTo make the “nanodaisies,” the researchers begin with a solution that contains a polymer called polyethylene glycol (PEG). The PEG forms long strands that have much shorter strands branching off to either side. Researchers directly link the anti-cancer drug camptothecin (CPT) onto the shorter strands and introduce the anti-cancer drug doxorubicin (Dox) into the solution.

PEG is hydrophilic, meaning it likes water. CPT and Dox are hydrophobic, meaning they don’t like water. As a result, the CPT and Dox cluster together in the solution, wrapping the PEG around themselves. This results in a daisy-shaped drug cocktail, only 50 nanometers in diameter, which can
be injected into a cancer patient.

Once injected, the nanodaisies float through the bloodstream until they are absorbed by cancer cells. In fact, one of the reasons the researchers chose to use PEG is because it has chemical properties that prolong the life of the drugs in the bloodstream.

Once in a cancer cell, the drugs are released. “Both drugs attack the cell’s nucleus, but via different mechanisms,” says Dr. Wanyi Tai, lead author and a former postdoctoral researcher in Gu’s lab.

“Combined, the drugs are more effective than either drug is by itself,” Gu says. “We are very optimistic about this technique and are hoping to begin pre-clinical testing in the near future.”

The paper, “Folding Graft Copolymer with Pedant Drug Segment for Co-Delivery of Anticancer Drugs,” is published online in the journal Biomaterials. Co-authors include Dr. Ran Mo, a current postdoctoral researcher in the program, and Yue Lu and Tianyue Jiang, who are both Ph.D. students in the program. The research was supported by the National Institutes of Health under grant 1UL1TR001111 and funding from NC State and UNC-Chapel Hill.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Method Sneaks Drugs into Cancer Cells Before Triggering Release
Biomedical engineering researchers have developed an anti-cancer drug delivery method that essentially smuggles the drug into a cancer cell before triggering its release.
Tuesday, May 13, 2014
Injectable ‘Smart Sponge’ Holds Promise for Controlled Drug Delivery
Researchers have developed a drug delivery technique for diabetes treatment in which a sponge-like material surrounds an insulin core.
Monday, July 22, 2013
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos