Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Mechanism Explains How Cancer Cells Spread

Published: Wednesday, May 28, 2014
Last Updated: Thursday, May 29, 2014
Bookmark and Share
A protein critical to the spread of deadly cancer cells has been identified and how it works determined.

UT Southwestern Medical Center cancer researchers have identified a protein critical to the spread of deadly cancer cells and determined how it works, paving the way for potential use in diagnosis and eventually possible therapeutic drugs to halt or slow the spread of cancer.

The protein, Aiolos, is produced by normal blood cells but commits a kind of “identity theft” of blood cells when expressed by cancer cells, allowing the latter to metastasize, or spread, to other parts of the body. Metastatic cancer cells have the ability to break free from tissue, circulate in the blood stream, and form tumors all over the body, in a way acting like blood cells.

“This is an important discovery because the metastatic spread of tumors accounts for the vast majority of cancer-related deaths. Now that we know the role of Aiolos, we can look toward therapeutic intervention,” said Dr. Lance Terada, Professor of Internal Medicine and Chief of the Division of Pulmonary/Critical Medicine at UT Southwestern.

The research, available online and in the journal Cancer Cell, found that Aiolos, which frequently is expressed in lung cancers, is a predictor of a markedly worse prognosis in lung cancer patients.

Aiolos is a member of a class of proteins called transcription factors — proteins that control which genes are turned on or off by binding to DNA and other proteins. Once bound to DNA, these proteins can promote or block the enzyme that controls the reading, or “transcription,” of genes, making genes more or less active.

Aiolos decreases the production of cell adhesion proteins and disrupts critical cell adhesion processes, including processes that allow tissue cells to anchor to their physical environment, a necessary requirement for cells to survive and spread. Metastatic cells don’t need this adhesion, allowing them to proliferate instead. Aiolos also represses another protein called p66Shc, which otherwise would suppress metastatic ability, which is the ability of the cancer cells to spread.

“Despite their importance, cellular behaviors that are largely responsible for cancer mortality are poorly understood,” Dr. Terada said. “Our study reveals a central mechanism by which cancer cells acquire blood cell characteristics to gain metastatic ability and furthers our understanding in this area.”

The research was done in collaboration with a team from the Tianjin Medical University, China, led by Dr. Zhe Liu, a former postdoctoral research fellow of Dr. Terada and co-corresponding author on the paper. Other UT Southwestern researchers involved include Dr. John Minna, Professor of the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research, Internal Medicine, and Pharmacology, and Dr. Luc Girard, Assistant Professor of Pharmacology.

Dr. Minna and Dr. Girard are members of UT Southwestern’s Harold C. Simmons Cancer Center, the only National Cancer Institute-designated cancer center in North Texas and one of just 66 NCI-designated cancer centers in the nation. The Harold C. Simmons Comprehensive Cancer Center includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. In addition, the Center’s education and training programs support and develop the next generation of cancer researchers and clinicians.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Wednesday, September 21, 2016
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Wednesday, September 21, 2016
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Tuesday, August 23, 2016
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Tuesday, August 16, 2016
UT Southwestern Targets Rising Rates of Kidney Cancer
Company has received $11 million in funding to the rising threat of kidney cancer.
Wednesday, August 03, 2016
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Friday, July 22, 2016
Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
Researchers’ Work Shines LIGHT on how to Improve Cancer Immunotherapy
Researchers at UT Southwestern Medical Center have reported a strategy to make a major advancement in cancer treatment.
Thursday, March 17, 2016
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
Scientific News
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!