Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Mechanism Explains How Cancer Cells Spread

Published: Wednesday, May 28, 2014
Last Updated: Thursday, May 29, 2014
Bookmark and Share
A protein critical to the spread of deadly cancer cells has been identified and how it works determined.

UT Southwestern Medical Center cancer researchers have identified a protein critical to the spread of deadly cancer cells and determined how it works, paving the way for potential use in diagnosis and eventually possible therapeutic drugs to halt or slow the spread of cancer.

The protein, Aiolos, is produced by normal blood cells but commits a kind of “identity theft” of blood cells when expressed by cancer cells, allowing the latter to metastasize, or spread, to other parts of the body. Metastatic cancer cells have the ability to break free from tissue, circulate in the blood stream, and form tumors all over the body, in a way acting like blood cells.

“This is an important discovery because the metastatic spread of tumors accounts for the vast majority of cancer-related deaths. Now that we know the role of Aiolos, we can look toward therapeutic intervention,” said Dr. Lance Terada, Professor of Internal Medicine and Chief of the Division of Pulmonary/Critical Medicine at UT Southwestern.

The research, available online and in the journal Cancer Cell, found that Aiolos, which frequently is expressed in lung cancers, is a predictor of a markedly worse prognosis in lung cancer patients.

Aiolos is a member of a class of proteins called transcription factors — proteins that control which genes are turned on or off by binding to DNA and other proteins. Once bound to DNA, these proteins can promote or block the enzyme that controls the reading, or “transcription,” of genes, making genes more or less active.

Aiolos decreases the production of cell adhesion proteins and disrupts critical cell adhesion processes, including processes that allow tissue cells to anchor to their physical environment, a necessary requirement for cells to survive and spread. Metastatic cells don’t need this adhesion, allowing them to proliferate instead. Aiolos also represses another protein called p66Shc, which otherwise would suppress metastatic ability, which is the ability of the cancer cells to spread.

“Despite their importance, cellular behaviors that are largely responsible for cancer mortality are poorly understood,” Dr. Terada said. “Our study reveals a central mechanism by which cancer cells acquire blood cell characteristics to gain metastatic ability and furthers our understanding in this area.”

The research was done in collaboration with a team from the Tianjin Medical University, China, led by Dr. Zhe Liu, a former postdoctoral research fellow of Dr. Terada and co-corresponding author on the paper. Other UT Southwestern researchers involved include Dr. John Minna, Professor of the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research, Internal Medicine, and Pharmacology, and Dr. Luc Girard, Assistant Professor of Pharmacology.

Dr. Minna and Dr. Girard are members of UT Southwestern’s Harold C. Simmons Cancer Center, the only National Cancer Institute-designated cancer center in North Texas and one of just 66 NCI-designated cancer centers in the nation. The Harold C. Simmons Comprehensive Cancer Center includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. In addition, the Center’s education and training programs support and develop the next generation of cancer researchers and clinicians.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Scientists Identify New and Beneficial Function of Endogenous Retroviruses
Researchers found that ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Cancer Researchers Identify Gene Mutations and Process for How Kidney Tumors Develop
Researchers have identified more than 3,000 new mutations by using next generation gene sequencing techniques.
Saturday, November 29, 2014
Study Identifying Cell of Origin for Large, Disfiguring Nerve Tumors
Lays groundwork for development of new therapies.
Wednesday, November 12, 2014
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Crucial for Stem Cell Survival Protein Identified Using Editing Tool CRISPR
A team of University of Wisconsin-Madison engineers has identified a protein that is integral to the survival and self-renewal processes of human pluripotent stem cells (hPSC).
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!