Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

‘Liquid Biopsy’ Offers New Way to Track Lung Cancer

Published: Wednesday, June 04, 2014
Last Updated: Wednesday, June 04, 2014
Bookmark and Share
Scientists have shown how a lung cancer patient’s blood sample could be used to monitor and predict their response to treatment.

The recent study, published in the journal Nature Medicine, also offers a method to test new therapies in the lab and to better understand how tumours become resistant to drugs.

Small cell lung cancer (SCLC) is an aggressive disease with poor survival and new treatments are desperately needed. In many cases the tumour is inoperable and biopsies are difficult to obtain, giving scientists few samples with which to study the disease.

Now research carried out at Cancer Research UK’s Manchester Institute, based at The University of Manchester – part of the Manchester Cancer Research Centre – has looked at the potential of using circulating tumour cells (CTCs) – cells that have broken off from the tumour and are circulating in the blood – to investigate a patient’s disease in a minimally invasive manner. 

The researchers, working closely with lung specialist and Medical Oncologist Dr Fiona Blackhall at The Christie NHS Foundation Trust, found that patients with SCLC had many more CTCs in a small sample of their blood than patients with other types of cancer. Importantly, the number of CTCs for each patient was related to their survival – patients with fewer CTCs in their blood lived longer.

Professor Caroline Dive, who led the study, said: “Access to sufficient tumour tissue is a major barrier to us fully understanding the biology of SCLC. This liquid biopsy is straightforward and not invasive so can be easily repeated and will allow us to study the genetics of each lung cancer patient’s individual tumour. It also means that we may have a feasible way of monitoring patient response to therapy, hopefully allowing us to personalise and tailor individual treatment plans to each patient.”

In addition, the team were able to use these CTCs to grow tumour models in mice, which they termed CTC-derived explants (CDXs). When they treated these mice with the same chemotherapy drugs as the SCLC patients they showed that the CDXs responded in the same way as each donor patient.

“We can use these models to help us understand why so many SCLC patients acquire resistance to chemotherapy and to search for and test potential new targeted treatments,” added Professor Dive.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blood Test Could Predict Best Treatment for Lung Cancer
Researchers at The Manchester University have isolated tumour cells that had broken away from the main cancer - known as CTCs - from the blood of 31 patients with this aggressive form of the disease.
Tuesday, November 22, 2016
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Thursday, October 08, 2015
Potential For Prediction Of Progression For Early Form Of Breast Cancer
Scientists in Manchester have identified a way to potentially predict which patients with an early form of breast cancer will experience disease progression.
Friday, April 17, 2015
Current Detection of Gene Mutations Misses People At High Risk Of Cancer
Research on the BRCA gene mutation in the Jewish population shows that the current process of identifying people misses half the people who have the mutation and are at risk of developing cancer.
Tuesday, December 02, 2014
New Insight into Drug Resistance in Metastatic Melanoma
A study by scientists in Manchester has shown how melanoma drugs can cause the cancer to progress once a patient has stopped responding to treatment.
Wednesday, June 04, 2014
Scientific News
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Turning Off Asthma Attacks
Researchers discover a critical cellular “off” switch for the inflammatory immune response that causes asthma attacks.
New Strategy May Drop Cancer’s Guard
Scientists eye ways to deconstruct tumors’ protective wall with current diabetes drug.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Smart Patch Releases Blood Thinners When Needed
Researchers have developed a smart patch that activelly monitors a patient's blood and releases blood thinning drugs when necessary.
First-Ever Capsule to Treat Hemophilia
In the near future, hemophiliacs could be able to treat their disease by simply swallowing a capsule.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
New Compound to Reduce Tumor Growth
Researchers at Stanford found that a new cell surface receptor they created is effective at inhibiting cancer growth in mice.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!