Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bowel Cancer Breakthrough May Benefit Thousands of Patients

Published: Monday, July 21, 2014
Last Updated: Monday, July 21, 2014
Bookmark and Share
Researchers at Queen’s University have discovered how two genes cause bowel cancer cells to become resistant to treatments used against the disease.

Dr Sandra van Schaeybroeck and her team have discovered how two genes cause bowel cancer cells to become resistant to treatments used against the disease. The research, which was funded by Cancer Research UK, was published this month in the prestigious international journal Cell Reports.
The activity of the two genes, called MEK and MET, was uncovered when the researchers looked at all the different pathways and interactions taking place in bowel cancer cells.

Dr van Schaeybroeck and her group found that these bowel cancers switch on a survival mechanism when they are treated with drugs that target faulty MEK genes. But when the researchers added drugs that also block the MET gene, the bowel cancer cells died.
The team are now testing a new approach to target these two genes in the most aggressive forms of bowel cancer in a European Commission funded clinical trial that is being led by Dr van Schaeybroeck.

Currently over 40,000 people are diagnosed with bowel cancer in the UK each year and over 16,000 patients die of the disease. More than half of patients develop the aggressive form of the disease which does not respond to standard therapy, the five year overall survival in this patient group is less than five per cent.

Study author Dr Sandra van Schaeybroeck, from the Centre for Cancer Research and Cell Biology (CCRCB) at Queen’s University, said: “We have discovered how two key genes contribute to aggressive bowel cancer. Understanding how they are involved in development of the disease has also primed the development of a potential new treatment approach for this disease.”

Queen’s University Vice-Chancellor, Professor Patrick Johnston, said: “Understanding the genes that cause bowel cancer is a key focus of our research. Our discoveries in this deadly disease have identified a new route to clinical application for cancer patients.”

Professor David Waugh, Director of the CCRCB at Queen’s, said: “The publication of this research by Dr van Schaeybroeck and her team demonstrates our commitment to performing excellent science here in Belfast that can be directly translated to the clinic.”

The clinical trial, which is called MErCuRIC and is due to start in September, will deliver personalised medicine to Northern Irish patients and patients from other European countries. Overall, the pan European collaborative effort will involving 13 research/clinical teams from nine European countries.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
Tuesday, May 17, 2016
Drug Testing without the Pain at Queen’s
Microneedles on a sticking-plaster-like patch may be the painless and safe way doctors will test for drugs and some infections in the future.
Wednesday, December 04, 2013
Scientific News
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!