Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Bowel Cancer Breakthrough May Benefit Thousands of Patients

Published: Monday, July 21, 2014
Last Updated: Monday, July 21, 2014
Bookmark and Share
Researchers at Queen’s University have discovered how two genes cause bowel cancer cells to become resistant to treatments used against the disease.

Dr Sandra van Schaeybroeck and her team have discovered how two genes cause bowel cancer cells to become resistant to treatments used against the disease. The research, which was funded by Cancer Research UK, was published this month in the prestigious international journal Cell Reports.
The activity of the two genes, called MEK and MET, was uncovered when the researchers looked at all the different pathways and interactions taking place in bowel cancer cells.

Dr van Schaeybroeck and her group found that these bowel cancers switch on a survival mechanism when they are treated with drugs that target faulty MEK genes. But when the researchers added drugs that also block the MET gene, the bowel cancer cells died.
The team are now testing a new approach to target these two genes in the most aggressive forms of bowel cancer in a European Commission funded clinical trial that is being led by Dr van Schaeybroeck.

Currently over 40,000 people are diagnosed with bowel cancer in the UK each year and over 16,000 patients die of the disease. More than half of patients develop the aggressive form of the disease which does not respond to standard therapy, the five year overall survival in this patient group is less than five per cent.

Study author Dr Sandra van Schaeybroeck, from the Centre for Cancer Research and Cell Biology (CCRCB) at Queen’s University, said: “We have discovered how two key genes contribute to aggressive bowel cancer. Understanding how they are involved in development of the disease has also primed the development of a potential new treatment approach for this disease.”

Queen’s University Vice-Chancellor, Professor Patrick Johnston, said: “Understanding the genes that cause bowel cancer is a key focus of our research. Our discoveries in this deadly disease have identified a new route to clinical application for cancer patients.”

Professor David Waugh, Director of the CCRCB at Queen’s, said: “The publication of this research by Dr van Schaeybroeck and her team demonstrates our commitment to performing excellent science here in Belfast that can be directly translated to the clinic.”

The clinical trial, which is called MErCuRIC and is due to start in September, will deliver personalised medicine to Northern Irish patients and patients from other European countries. Overall, the pan European collaborative effort will involving 13 research/clinical teams from nine European countries.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug Testing without the Pain at Queen’s
Microneedles on a sticking-plaster-like patch may be the painless and safe way doctors will test for drugs and some infections in the future.
Wednesday, December 04, 2013
Scientific News
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Revolutionary Gene-editing Technique to Stop AIDS Virus in Its Tracks
UNLV personalized medicine researchers seeking patent on potential HIV cure. Their technique uses a plant protein widely used in agriculture industry.
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos