Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UTSW Cancer Researchers Identify Irreversible Inhibitor for KRAS Gene Mutation

Published: Tuesday, July 29, 2014
Last Updated: Monday, July 28, 2014
Bookmark and Share
Irreversible inhibitor for KRAS gene mutation involved in lung, colon, and pancreatic cancers.

UT Southwestern Medical Center cancer researchers have found a molecule that selectively and irreversibly interferes with the activity of a mutated cancer gene common in 30 percent of tumors.

The molecule, SML-8-73-1 (SML), interferes with the KRAS gene, or Kirsten rat sarcoma viral oncogene homolog. The gene produces proteins called K-Ras that influence when cells divide. Mutations in K-Ras can result in normal cells dividing uncontrollably and turning cancerous. These mutations are particularly found in cancers of the lung, pancreas, and colon. In addition, people who have the mutated gene are less responsive to therapy.

Researchers have unsuccessfully tried to develop a drug to inhibit K-Ras for some 30 years.

“RAS proteins including KRAS have not been ‘druggable’ for many decades despite a lot of effort from academia and industry,” said senior author Dr. Kenneth Westover, Assistant Professor of Radiation Oncology and Biochemistry, and a member of UT Southwestern’s Harold C. Simmons Cancer Center.

“We are exploring irreversible inhibitors as a solution, which we believe may pave the way for the development of KRAS-targeted compounds with therapeutic potential and perhaps compounds that target other RAS family proteins involved in cancer,” Dr. Westover said.

Dr. Westover works as both a clinician as a member of the Lung Radiation Oncology Team at the Simmons Cancer Center, and as a researcher. The Westover laboratory investigates the molecular basis of cancer with an eye toward developing compounds that perturb cancer biology, and therefore have potential to become therapies. Dr. Westover’s lab has been particularly targeting KRAS because this gene is the most commonly mutated oncogene in cancer.

Building on previous work, Dr. Westover and fellow investigators used a technique called X-ray crystallography to determine what happens when SML is added to KRAS carrying the G12C mutation, a hallmark of tobacco-associated lung cancer and present in 25,000 of the new cases of lung cancer in the U.S. annually.

Researchers found that SML irreversibly binds to mutated KRAS, making the KRAS G12C inactive. SML competes with molecules that KRAS naturally binds to, called GTP and GDP, and is not removable, even when GTP and GDP are present at very high levels. This attribute is what makes SML an irreversible inhibitor - neither GDP nor GTP are able to knock it off and take its place.

The researchers then used a technique called mass spectrometry to determine that SML is not only irreversible, but selective - binding only to KRAS and not the roughly 100 other members of the RAS protein family that have very similar structures.

“We believe SML may be the first irreversible and selective inhibitor of KRAS,” said Dr. Westover, who was recruited to UT Southwestern with funds from the state-funded Cancer Research and Prevention Institute of Texas. “As a next step, we are improving the SML compound to facilitate studies involving living cancer cells, and eventually animals and humans.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Scientists Identify New and Beneficial Function of Endogenous Retroviruses
Researchers found that ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Cancer Researchers Identify Gene Mutations and Process for How Kidney Tumors Develop
Researchers have identified more than 3,000 new mutations by using next generation gene sequencing techniques.
Saturday, November 29, 2014
Study Identifying Cell of Origin for Large, Disfiguring Nerve Tumors
Lays groundwork for development of new therapies.
Wednesday, November 12, 2014
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Crucial for Stem Cell Survival Protein Identified Using Editing Tool CRISPR
A team of University of Wisconsin-Madison engineers has identified a protein that is integral to the survival and self-renewal processes of human pluripotent stem cells (hPSC).
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!