Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

CRI Scientists Pinpoint Gene Likely to Promote Childhood Cancers

Published: Tuesday, August 12, 2014
Last Updated: Tuesday, August 12, 2014
Bookmark and Share
The study was published in the journal Cancer Cell.

Researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) have identified a gene that contributes to the development of several childhood cancers, in a study conducted with mice designed to model the cancers.

If the findings prove to be applicable to humans, the research could lead to new strategies for targeting certain childhood cancers at a molecular level.

“We and others have found that Lin28b - a gene that is normally turned on in fetal but not adult tissues - is expressed in several childhood cancers, including neuroblastoma, Wilms’ tumor and hepatoblastoma, a type of cancer that accounts for nearly 80 percent of all liver tumors in children,” said Dr. Hao Zhu, a principal investigator at CRI, and Assistant Professor of Pediatrics and Internal Medicine at UT Southwestern Medical Center. “In our study, we found that overproduction of Lin28b specifically causes hepatoblastoma, while blocking Lin28b impairs the cancer’s growth. This opens up the possibility that pediatric liver cancer patients could one day be treated without resorting to chemotherapy.”

Lin28b is an attractive therapeutic target in cancer because it is ordinarily only expressed in embryos, so blocking it in children should specifically hinder cancer growth without introducing many side effects.

Each year in the United States, 700 children are newly diagnosed with neuroblastoma, 500 with Wilms’ tumor and 100 with hepatoblastoma. At Children’s Medical Center in Dallas, more than 100 children have been treated for those three types of cancers over the last two years.

Previous studies found that Lin28b is a critical factor in stem cell and fetal tissue development, leading Dr. Zhu and his team to hypothesize that the same gene would play a significant role in the development of certain cancers.

“We looked at Lin28b in a multitude of ways in mice to study its effects on cancer, from increasing it significantly to deleting it,” said Dr. Zhu, co-senior author of the paper. “From this and earlier studies, it appears that Lin28b activates the metabolic pathways that provide the building blocks of growth for certain cancers.”

The next step for the Zhu lab is to establish whether genes related to Lin28b have similar effects on the development of cancer, and to determine if those genes might be more effective targets for potential therapies.

Dr. George Daley, Professor of Hematology at Children’s Hospital Boston, is co-senior author of the paper. The work in the Zhu lab was supported by the National Institutes of Health, the Burroughs Wellcome Fund, the Cancer Prevention and Research Institute of Texas and donors to the Children’s Medical Center Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Tuesday, August 23, 2016
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Tuesday, August 16, 2016
UT Southwestern Targets Rising Rates of Kidney Cancer
Company has received $11 million in funding to the rising threat of kidney cancer.
Wednesday, August 03, 2016
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Friday, July 22, 2016
Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
Researchers’ Work Shines LIGHT on how to Improve Cancer Immunotherapy
Researchers at UT Southwestern Medical Center have reported a strategy to make a major advancement in cancer treatment.
Thursday, March 17, 2016
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
UT Southwestern Scientists Synthesize Nanoparticles
Synthetic nanoparticles to deliver tumor-suppressing therapies to damaged livers.
Wednesday, January 27, 2016
Tumor-suppressing Gene Works by Restraining Mobile Genetic Elements
Findings from the study leads to new ways of diagnosing and treating cancer.
Saturday, January 23, 2016
Scientific News
Unravelling the Metastatic Mechanism of Melanoma
Research has uncovered the mechanism of melanoma spreading; the findings could lead to a cure for the disease.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Precision Nanobots Target Cancerous Tumours
Researchers achieve breakthrough toward redefining anti-cancer drug administration using nanorobotics.
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Novel Therapeutic Approach for Blood Disorders
Gene editing of human blood-forming stem cells mimics a benign genetic condition that helps to overcome sickle cell disease and other blood disorders.
Immune-Cell Population Predicts Immunotherapy Response in Melanoma
All patients with high levels of one immune-cell type responded to treatment.
Effects of Chemotherapy on Developing Ovaries in Female Fetuses
Researchers at University of Edinburgh have shown that etoposide can damage the development of the ovaries while a fetus is in the womb.
Breast Tumors Evolve in Response to Hormone Therapy
Researchers have suggested that analyzing a single sample of the breast tumor is insufficient for understanding how a patient should best be treated.
Cutting off the Cancer Fuel Supply
Research from investigators at Rutgers Cancer Institute of New Jersey and Princeton University has identified a new approach to cancer therapy in cutting off a cancer cell’s ‘fuel supply’ by targeting a cellular survival mechanism known as autophagy. The co-corresponding authors of the work are Rutgers Cancer Institute Deputy Director Eileen P. White, PhD, and researcher ‘Jessie’ Yanxiang Guo, PhD.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!