Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Ways to Treat Solid Tumours

Published: Friday, August 15, 2014
Last Updated: Monday, August 18, 2014
Bookmark and Share
An international team of scientists has shown that an antibody against the protein EphA3, found in the micro-environment of solid cancers, has anti-tumour effects.

As EphA3 is present in normal organs only during embryonic development but is expressed in blood cancers and in solid tumours, this antibody-based approach may be a suitable candidate treatment for solid tumours.

The researchers from Monash University and Ludwig Cancer Research, in Australia, and KaloBios Pharmaceuticals, in the US, have had their findings published in the journal Cancer Research.

The team, led jointly by the late Professor Martin Lackmann, from the School of Biomedical Sciences at Monash; and Professor Andrew Scott, from Ludwig Cancer Research, has found that even if tumour cells do not have this molecule they can thrive by recruiting and taking advantage of supporting EphA3-containing cells in the tumour micro-environment.

First author, Dr Mary Vail, Monash Department of Biochemistry and Molecular Biology said: “The tumour cells send out signals to the surrounding area and say: ‘We need a blood supply and a foundation upon which to spread’.”

“We have shown that EphA3 expressing stromal stem cells, which are produced by the bone marrow, form cells that support and create blood vessels in tumours,” Dr Vail said.

Professor Andrew Scott’s team at Ludwig introduced human prostate cancer cells into a mouse model to mimic disease progression in humans. EphA3 was found in stromal cells and blood vessels surrounding the tumour.

They also observed that treatment with an antibody against EphA3 (chIIIA4) significantly slowed tumour growth. The antibody damaged tumour blood vessels and disrupted the stromal micro-environment, and cancer cells died because their ‘life-support’ was compromised.

“In addition, we screened various tumours from patient biopsies - sarcomas, melanomas as well as prostate, colon, breast, brain and lung cancers - and confirmed EphA3 expression on stromal cells and newly forming blood vessels,” Professor Scott said.

“Our research findings indicate that the tumour micro-environment is important, and monoclonal antibodies against EphA3 are one way to target and kill a variety of solid tumours as well as blood cancers.”

Currently, KaloBios Pharmaceuticals is testing the anti-EphA3 antibody KB004 in a multi-centre Phase I/II clinical trial in Melbourne and the US in patients with EphA3 expressing blood malignancies: AML, MDS and myelofibrosis.

Dr Vail, who collaborated with her former mentor on the project for 10 years, said this research represented Martin Lackmann’s life work.

“Martin was dedicated to helping people, and believed that KB004 was a promising therapeutic approach. He rightly anticipated that it would be well-tolerated in cancer patients, and through this collaborative project, his pioneering research has progressed to clinical trials and potentially new treatments for cancer patients,” Dr Vail said.

The research study was funded by ARC, NHMRC and KaloBios Pharmaceuticals.




Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Discovers Breast Cancer Metastasis Gene
The discovery paves the way for the development of therapies that target the early stages of breast cancer.
Wednesday, August 12, 2015
Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!