Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Ways to Treat Solid Tumours

Published: Friday, August 15, 2014
Last Updated: Monday, August 18, 2014
Bookmark and Share
An international team of scientists has shown that an antibody against the protein EphA3, found in the micro-environment of solid cancers, has anti-tumour effects.

As EphA3 is present in normal organs only during embryonic development but is expressed in blood cancers and in solid tumours, this antibody-based approach may be a suitable candidate treatment for solid tumours.

The researchers from Monash University and Ludwig Cancer Research, in Australia, and KaloBios Pharmaceuticals, in the US, have had their findings published in the journal Cancer Research.

The team, led jointly by the late Professor Martin Lackmann, from the School of Biomedical Sciences at Monash; and Professor Andrew Scott, from Ludwig Cancer Research, has found that even if tumour cells do not have this molecule they can thrive by recruiting and taking advantage of supporting EphA3-containing cells in the tumour micro-environment.

First author, Dr Mary Vail, Monash Department of Biochemistry and Molecular Biology said: “The tumour cells send out signals to the surrounding area and say: ‘We need a blood supply and a foundation upon which to spread’.”

“We have shown that EphA3 expressing stromal stem cells, which are produced by the bone marrow, form cells that support and create blood vessels in tumours,” Dr Vail said.

Professor Andrew Scott’s team at Ludwig introduced human prostate cancer cells into a mouse model to mimic disease progression in humans. EphA3 was found in stromal cells and blood vessels surrounding the tumour.

They also observed that treatment with an antibody against EphA3 (chIIIA4) significantly slowed tumour growth. The antibody damaged tumour blood vessels and disrupted the stromal micro-environment, and cancer cells died because their ‘life-support’ was compromised.

“In addition, we screened various tumours from patient biopsies - sarcomas, melanomas as well as prostate, colon, breast, brain and lung cancers - and confirmed EphA3 expression on stromal cells and newly forming blood vessels,” Professor Scott said.

“Our research findings indicate that the tumour micro-environment is important, and monoclonal antibodies against EphA3 are one way to target and kill a variety of solid tumours as well as blood cancers.”

Currently, KaloBios Pharmaceuticals is testing the anti-EphA3 antibody KB004 in a multi-centre Phase I/II clinical trial in Melbourne and the US in patients with EphA3 expressing blood malignancies: AML, MDS and myelofibrosis.

Dr Vail, who collaborated with her former mentor on the project for 10 years, said this research represented Martin Lackmann’s life work.

“Martin was dedicated to helping people, and believed that KB004 was a promising therapeutic approach. He rightly anticipated that it would be well-tolerated in cancer patients, and through this collaborative project, his pioneering research has progressed to clinical trials and potentially new treatments for cancer patients,” Dr Vail said.

The research study was funded by ARC, NHMRC and KaloBios Pharmaceuticals.




Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
Wednesday, May 18, 2016
Study Discovers Breast Cancer Metastasis Gene
The discovery paves the way for the development of therapies that target the early stages of breast cancer.
Wednesday, August 12, 2015
Scientific News
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Poliovirus Therapy Wins 'Breakthrough' Status
FDA decision will fast-track research on breakthrough Duke brain cancer therapy.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
New Treatment for Pancreatic Cancer
Researchers at Purdue University have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!