Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Computer Model Reveals Cancer's Energy Source

Published: Tuesday, August 19, 2014
Last Updated: Tuesday, August 19, 2014
Bookmark and Share
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.

A computer model study reveals - for the first time - details of an energy-creating process vital and unique to cancer cells. The research holds promise for new interventions and for personalizing cancer treatments based on individual needs.

The findings, which will revise basic biochemistry textbooks, focused on the energy-making process in cancer cells known as the Warburg Effect.

The Cornell-led study, published July 9 in the journal eLife, revealed that some of the enzymes thought to have no effect on the Warburg Effect, in fact, play a large role: An enzyme called GAPDH influences many parts of a cancer cell’s energy-making pathway.

“Our findings open opportunities for new ways to intervene in the Warburg Effect,” said Jason Locasale, the paper’s senior author and assistant professor of nutritional sciences in Cornell’s College of Agricultural and Life Sciences. Alexander Shestov, a former senior research associate, and Xiaojing Liu, a postdoctoral fellow, both in Locasale’s lab, are the paper’s lead authors. The results also “provide glimpses into whether we have predictive capacity to discern if treatments might be working,” Locasale added.

All multicellular organisms evolved pathways that take nutrients, sugars and oxygen and make energy through respiration and chemical processes. In normal cells, this energy-making process is known as oxidative phosphorylation. But when cells evolve cancerous properties and grow uncontrollably, they instead ferment their sugars to create energy even in the presence of oxygen. This process is called aerobic glycolysis, or the Warburg Effect.

The new findings are an important step toward developing a drug that affects only fermentation and not the normal metabolism of glucose, thereby depriving cancer cells of energy. The new model lays groundwork for predicting whether treatments will be effective based on an individual’s unique metabolism.

Still, very few details have been known about the Warburg Effect. “We can now systematically perturb anything in the [computer] model and identify important components” of the Warburg Effect, Locasale said.

Dating back to work by Efraim Racker, a Cornell researcher who made seminal discoveries in the area in the 1970s, followed by advances in cancer and genetic research, it is “known now that almost every cancer gene has some capacity to induce the Warburg Effect,” making it fundamental to proliferative diseases, Locasale said.

Currently, the Warburg Effect is used in clinical practice to diagnose and monitor cancer. Doctors inject patients with radioactive glucose and then watch where it is consumed; tumors are a major source of consumption. Researchers are also exploring whether dietary interventions with less sugar and the use of diabetes drugs that lower glucose may impact the Warburg Effect to treat cancer.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
For Cancer Patients, Sugar-Coated Cells are Deadly
Paszek’s lab will focus on developing high-resolution microscopy to further study cell membrane-related cancer mechanisms.
Friday, June 27, 2014
Gold-Plated Nano-Bits Find, Destroy Cancer Cells
Scientists have merged tiny gold and iron oxide particles, then added antibody guides to steer them through the bloodstream toward colorectal cancer cells.
Monday, October 21, 2013
Genetic Switches Play Big Role in Human Evolution
Study offers further proof that the divergence of humans from chimpanzees was profoundly influenced by mutations to DNA sequences.
Wednesday, June 12, 2013
Turn out the Light: 'Switch' Determines Cancer Cell Fate
Like picking a career or a movie, cells have to make decisions – and cancer results from cells making wrong decisions.
Friday, May 03, 2013
Nano Compartments May Aid Drug Delivery, Catalyst Design
Spongelike nanoparticles whose pores can be filled with drugs offer the promise of drug delivery to specific targets in the body, avoiding unpleasant side effects.
Monday, April 22, 2013
Scientists Develop World's Smallest Drug Deliverer
Cornell researchers have created a pore in “Cornell Dots” – brightly glowing nanoparticles nicknamed C-Dots – that can carry medicine.
Friday, April 12, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Organic Metamaterial Flows like a Liquid, Remembers its Shape
A bit reminiscent of the Terminator T-1000, a new material created by Cornell researchers is so soft that it can flow like a liquid and then, strangely, return to its original shape.
Tuesday, December 04, 2012
Study: How Cells form 'Trash Bags' for Recycling Waste
A class of membrane-sculpting proteins create vesicles that carry old and damaged proteins from the surface of cellular compartments into internal recycling plants where the waste is degraded and components are reused.
Tuesday, October 23, 2012
Metastatic 'Switch' Sheds New Light on Colon Cancer
What kills cancer patients often isn't the primary tumor; it's when the tumor metastasizes - or spreads the cancer to other areas of the body.
Tuesday, September 11, 2012
The Force is with us: GEDI Chip Sorts Prostate Cancer Cells
Geometrically Enhanced Differential Immunocapture chip identify and collect cancer cells from a patient's bloodstream.
Friday, June 29, 2012
Some Stem Cells Can Trigger Tumors
When in contact with even trace amounts of cancer cells, stem cells can create a microenvironment suitable for more tumors to grow.
Wednesday, June 06, 2012
Scientific News
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!