Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Obtain Key Insights into How the Internal Body Clock is Tuned

Published: Friday, August 22, 2014
Last Updated: Friday, August 22, 2014
Bookmark and Share
New way to regulate internal body clocks by long non-coding RNA.

Researchers at UT Southwestern Medical Center have found a new way that internal body clocks are regulated by a type of molecule known as long non-coding RNA.

The internal body clocks, called circadian clocks, regulate the daily “rhythms” of many bodily functions, from waking and sleeping to body temperature and hunger. They are largely “tuned” to a 24-hour cycle that is influenced by external cues such as light and temperature.

“Although we know that long non-coding RNAs are abundant in many organisms, what they do in the body, and how they do it, has not been clear so far,” said Dr. Yi Liu, Professor of Physiology. “Our work establishes a role for long non-coding RNAs in ‘tuning’ the circadian clock, but also shows how they control gene expression.”

Determining how circadian clocks work is crucial to understanding several human diseases, including sleep disorders and depression in which the clock malfunctions. The influence of a functional clock is evident in the reduced performance of shift workers and the jet lag felt by long-distance travellers.

Dr. Liu and his team were able to learn more about the circadian rhythms by studying model systems involving the bread mold, Neurospora crassa. The researchers found that the expression of a clock gene named frequency (frq) is controlled by a long non-coding RNA named qrf (frq backwards) - an RNA molecule that is complementary, or antisense, to frq. Unlike normal RNA molecules, qrf does not encode a protein, but it can control whether and how much frq protein is produced.

Specifically, qrf RNA is produced in response to light, and can then interfere with the production of the frq protein. In this way, qrf can “re-set” the circadian clock in a light-dependent way. This regulation works both ways: frq can also block the production of qrf. This mutual inhibition ensures that the frq and qrf RNA molecules are present in opposite “phases” of the clock and allows each RNA to oscillate robustly. Without qrf, normal circadian rhythms are not sustained, indicating that the long non-coding RNA is required for clock functions.

The findings are published online in the journal Nature.

“We anticipate a similar mode of action may operate in other organisms because similar RNAs have been found for clock genes in mice. In addition, such RNAs may also function in other biological processes because of their wide presence in genomes,” said Dr. Liu, who is the Louise W. Kahn Scholar in Biomedical Research.

UT Southwestern investigators are leaders in unraveling the gene networks underlying circadian clocks and have shown that most body organs, such as the pancreas and liver, have their own internal clocks, and that virtually every cell in the human body contains a clock. It now appears that the clocks and clock-related genes - some 20 such genes have been identified - affect virtually all of the cells’ metabolic pathways, from blood sugar regulation to cholesterol production.

“This study adds to an important body of work that has shown the ubiquity of a circadian clock across species, including humans, and its role in metabolic regulation in cells, organs, and organisms,” said Dr. Michael Sesma, Program Director in the Division of Genetics and Developmental Biology at the of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the research. “These new results from Dr. Liu and his colleagues also extend beyond understanding the function of an anti-sense RNA in the fine tuning of a cell’s daily rhythm; they provide an example of the means by which anti-sense transcription likely regulates other key molecular and physiological processes in cells and organisms.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UT Southwestern Biochemist Receives NIH Early Independence Award
Dr. William Israelsen studies on hibernation may aid the fight against cancer.
Wednesday, October 07, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Scientists Identify New and Beneficial Function of Endogenous Retroviruses
Researchers found that ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Cancer Researchers Identify Gene Mutations and Process for How Kidney Tumors Develop
Researchers have identified more than 3,000 new mutations by using next generation gene sequencing techniques.
Saturday, November 29, 2014
Scientific News
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos