Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>Resources>Books>This Book
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.
Scroll Up
Scroll Down

Homologous Recombination and Gene Silencing in Plants
Bookmark and Share

Higher eukaryotes are characterized by the allocation of distinct functions to numerous types of differentiated cells. Whereas in animals the well-defined, protected cells of the germ line separate early, germ cells in plants differentiate from somatic cells only after many cycles of mitotic division. Therefore somatic mutations in plants can be transmitted via the germ cells to the progeny. There is thus a clear need for somatic tissues to maintain their genetic integrity in the face of environmental challenges, and two types of interactions have been shown to play important roles in the conservation as well as flexibility of plant genomes: homologous recombination of repeated sequences and silencing of multiplied genes. Sensitive methods have been developed that allow greater insights into the dynamics of the genome. This book summarizes current knowledge and working hypotheses about the frequencies and mechanisms of mitochondrial, plastid, nuclear and viral recombination and the inactivation of repeated genes in plants. Despite rapid developments in the field, it is often not possible to provide final answers. Thus, it is an additional task of this book to define the open questions and future challenges. The book is addressed to scientists working on plant biology and recombination, to newcomers in the field and to advanced biology students.

Further Information


Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos