Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Faster Way to Probe Proteins

Published: Thursday, April 26, 2012
Last Updated: Thursday, April 26, 2012
Bookmark and Share
Infrared spectroscopy allows scientists to analyze protein structure on an ultrafast timescale.

Proteins can take many different shapes, and those shapes help determine each protein’s function. Analyzing those structures can tell scientists a great deal about how a protein behaves, but many of the methods now used to study structure require proteins to be crystallized or otherwise altered from their natural state.

Now, MIT researchers have developed a way to analyze proteins that doesn’t require any pre-treatment. The technique is also extremely fast, allowing scientists to see, for the first time, how a protein changes its shape over picoseconds, or trillionths of a second.

The researchers, led by chemistry professor Andrei Tokmakoff and postdoc Carlos Baiz, describe their new technique this month in the journal Analyst. Their approach builds on a technology known as two-dimensional infrared spectroscopy, which works by shining pulses of infrared light on a molecule and measuring the resulting molecular vibrations. In the new paper, the researchers came up with a way to analyze that data and correlate it with common structural elements found in proteins.

Once assembled, proteins tend to fold into one of two secondary structures, known as alpha helices and beta pleated sheets. In this study, the researchers distinguished between those two structures by examining how bonds between carbon and oxygen — found in each of the amino acids that make up proteins — vibrate when exposed to infrared light.

In an alpha helix, the carbon-oxygen bonds run parallel to the protein’s backbone; in a beta sheet, those bonds are perpendicular to the sheet. Because of that difference, the bonds vibrate at different frequencies when struck with infrared light. This allows the researchers to calculate the percentage of the amino acids that belong to a helical structure and the percentage that form a beta sheet.

The researchers confirmed the accuracy of their calculations by analyzing a set of proteins whose structures are already known. Their method does not currently reveal the exact structure of a protein, but the researchers are working on ways to determine the arrangements of the sheets and helices from the spectroscopic data.

“In principle, the full structure of the protein is represented in the spectrum. The trick is how to get out the information,” says Baiz, lead author of the paper.

One way to do that is to analyze data from a broader range of infrared wavelengths. The researchers are also developing methods to get information about other bonds within the amino acids.

Because the new method can be performed over millionths of a second, it can be used to study how proteins fold and unfold when denatured by heat. After hitting a protein with a laser blast to heat it up, the researchers can capture a series of snapshots of how the protein unfolds over this very short time period.

“This is the first method that will allow us to take snapshots of the structure of the protein as it’s denatured,” Baiz says. “Usually the way people look at proteins is they start with the unfolded state and they end up with the folded state, so you have two static structures. What we can do now is look at all the structures along the pathway.”

Munira Khalil, an assistant professor of chemistry at the University of Washington, says the ability to track structural changes over time is the technique’s biggest strength. “One big question is how do proteins fold — at what point does it go from a completely disordered structure to an ordered structure?” says Khalil, who was not involved in this research.

This would be particularly useful for studying proteins that cause disease when misfolded, such as the tau protein found in patients with Alzheimer’s disease and the prion that causes Creutzfeldt-Jakob disease.

The method can also measure the structural changes that occur as proteins bind to each other. “If the protein is like a rock, and doesn’t change, then it’s never really going to bind its target or do anything. Those are the types of processes we can look at — the conformational changes that drive biological function,” Baiz says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Detector Sniffs Out Origins Of Methane
Instrument identifies methane’s origins in mines, deep-sea vents, and cows.
Friday, March 06, 2015
Improving the Accuracy of Cancer Diagnoses
New spectroscopy technique could help doctors better identify breast tumors.
Tuesday, January 08, 2013
Scientific News
Fast, Simple Test for Colitis
A minimally invasive screening for ulcerative colitis using emerging infrared technology could be a rapid and cost-effective method for detecting disease that eliminates the need for biopsies and intrusive testing of the human body.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Using Light To Examine The Lungs Of Premature Babies
New technique has potential to replace the use of X-rays to see how much air babies’ lungs contain.
Novel Spectroscopy by Using Aberrations
Flaws inherent to electron microscopy used to create probes for performing novel atomic-level spectroscopy.
Effective Identification of Low-Gliadin Wheat Lines
Researchers have demonstrated the use of NIRS to identify low-gliadin wheat lines.
Prostate Cancer Surgery Improved
Researchers at UT Southwestern Medical Center have determined that light reflectance spectroscopy can differentiate between malignant and benign prostate tissue with 85 percent accuracy, a finding that may lead to real-time tissue analysis during prostate cancer surgery.
Faster UVA Molecular Analysis Technology
There are people in the world – chemical engineers, astronomers, national defense scientists investigating an explosion – who need to know just what something is made of, down to the molecular level.
Properties of Light Can be Controlled by Nanostructures
A study led by the UPV/EHU-University of the Basque Country professor Ángel Rubio has simulated a new device to generate terahertz radiation using carbon nanostructures.
Infrared Spectrometer ‘Engine’ for Developers
Si-Ware Systems has launched volume production of the smallest, lowest-cost infra-red spectrometer “engine” for developers.
Breaking the Chain
Compound prevents multidrug-resistant fungi from pumping out drugs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!