Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Purdue University Researchers Use Nanoscale IR Spectroscopy via AFM-IR

Published: Friday, May 11, 2012
Last Updated: Friday, May 11, 2012
Bookmark and Share
Utilizing this technique has provided key insights into drug-polymer blends.

Two new papers are going to press featuring the use of Anasys Instruments' nanoIR™ system by Professor Lynne S. Taylor's group in the Department of Industrial and Physical Pharmacy at Purdue University.

In each study, miscibility of pharmaceutically relevant blends was examined and specific sub-micrometer-sized domains characterized using standard atomic force microscopy (AFM) and nanoscale Infrared spectroscopy (AFM-IR).

The first of the two papers, entitled "Nanoscale Mid-Infrared Imaging of Phase Separation in a Drug-Polymer Blend" is being published in the June 2012 issue of the Journal of Pharmaceutical Sciences.

The researchers at Purdue explored the applicability of nanoscale IR spectroscopy and imaging to analyze a partially miscible model pharmaceutical drug-polymer system consisting of felodipine and poly(acrylic acid) (PAA).

By combining AFM topography imaging with AFM-IR chemical information obtained at a high spatial resolution, it was possible to interrogate both the structure and chemical composition of phases in the felodipine-PAA blends.

The second of the papers "Nanoscale Mid-Infrared Evaluation of the Miscibility Behavior of Blends of Dextran or Maltodextrin with Poly(vinylpyrrolidone)" has been accepted for publication in the Journal of Molecular Pharmaceuticals.

In this study, the AFM topography data combined with AFM-IR chemical information provided structural insights into the formation of phase-separated systems.

The size, shape, and distribution of the different domains formed and the dependence of these features on the molecular weights of the polymers was analyzed.

AFM-IR analysis is an important complement to more traditional miscibility evaluation probes currently available in the field.

According to Professor Taylor "being able to obtain infrared spectra at nanoscale spatial resolution is a dramatic development that should provide new insights into the microstructure of pharmaceutical formulations. This will enable us perform in-depth studies that enable relationships between microstructure, processing and product performance to be elucidated."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New NIST AFM-IR Publication has Catalysis Research Implications
Anasys Instruments reports on a new publication from their nanoIR users at NIST which assess the chemical composition of a metal-organic framework with nanoscale resolution.
Tuesday, March 25, 2014
Inventor of AFM-IR Technique to Receive Ernst Abbe Memorial Award
Professor Alexandre Dazzi to receive the award for pioneering field of nanoscale IR Spectroscopy.
Wednesday, March 19, 2014
French Researchers to Identify Best Microbes for Biofuel Production
Scientists used atomic force microscopy combined with infrared spectroscopy.
Wednesday, February 19, 2014
Anasys' NIST Users Report on New AFM-IR Nanoscale Chemical Imaging Method
New application for AFM-IR to study in NIST publication "Tech Beat."
Thursday, July 25, 2013
Invited Award Symposium Presentation Nanoscale IR Spectroscopy at Pittcon 2012
Anasys Instruments announced that Dr. Bruce Chase is presenting an invited talk entitled "Structure and Orientation in Electrospun Nanofibers", as part of the Organized Contributed Session on Analytical Applications of Broadly Tunable Lasers.
Thursday, March 08, 2012
Anasys Instruments Receives Microscopy Today’s 2011 Innovation Award
AFM-IR system has been recognized by Microscopy Today in the receipt of the 2011 Innovation Award.
Thursday, August 18, 2011
Scientific News
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Revealing the Secrets of 19th Century Fashion Industry
The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses.
How Nanoparticles Damage Immune Cells
New evidence points to protein oxidation, a common means of molecular damage.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Innovation Boosts Study of Fragile Biological Samples
Researchers have found a simple new way to study very delicate biological samples – like proteins at work in photosynthesis and components of protein-making machines called ribosomes – at the atomic scale using SLAC's X-ray laser.
Clues for Battling Botulism
Scientists decipher details of deadly toxin's cloaking mechanism that could guide development of new vaccines, treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!