We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

NMR Protocol for Determination of Oxidation Susceptibility of Serum Lipids and Application of the Protocol to a Chocolate Study

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Abstract
A protocol for determination of oxidation susceptibility of serum lipids based on proton nuclear magnetic resonance ((1)H NMR) spectroscopy is presented and compared to the commonly used spectrophotometric method. Even though there are methodological differences between these two methods, the NMR-based oxidation susceptibility correlates well (r(2) = 0.73) with the lag time determined spectrophotometrically. In addition to the oxidizability of serum lipids, the NMR method provides also information about the lipid profile. The NMR oxidation assay was applied to the chocolate study including fasting serum samples (n = 45) from subjects who had consumed white (WC), dark (DC) or high-polyphenol chocolate (HPC) daily for 3 weeks. The oxidation susceptibility of serum lipids decreased in the HPC group, and there was a significant difference between the WC and HPC groups (P = 0.031). According to the random forest analysis, the consumption of the HPC chocolate induced changes to the amounts of HDL, phosphatidylcholine, sphingomyelin, and nervonic, docosahexaenoic and myristic acids. Furthermore, arachidonic, docosahexaenoic, docosapentaenoic and palmitic acids, gamma-glutamyl transferase, hemoglobin, HDL, phosphatidylcholine and choline containing phospholipids explained about 60% of the oxidation susceptibility values.

The article is published online in the journal Metabolomics and is free to access.