Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

AB SCIEX and University of Wollongong Collaborate

Published: Thursday, September 20, 2012
Last Updated: Thursday, September 20, 2012
Bookmark and Share
Parties announce a research partnership to develop lipid analysis capabilities, including the most definitive and comprehensive identification of double bond position in lipids.

This collaboration is part of AB SCIEX's new Academic Partnership Program, which helps support academic researchers to push the limits of biomedical research.

The agreement provides AB SCIEX, a global leader in life science analytical technologies, with an exclusive license to UOW's "OzID" intellectual property, a patented technology which allows scientists to understand lipid structure faster and with better granularity than currently available alternatives.

Funded by an ARC Linkage Project grant, the research plan will see a multi-disciplinary UOW research team working with AB SCIEX to develop a standardized procedure for determining double bond position in lipids. This will include exploring lipid functions within the human body, such as energy storage, cell membrane structure and hormone signaling.

"Altered lipid metabolism has been linked to such global health concerns as obesity, type 2 diabetes, cardiovascular disease and various cancers," explained Principal Investigator, Dr Todd Mitchell from UOW's School of Health Sciences.  "Recent advances in mass spectrometry have spawned the field of lipidomics which, together with proteomics, metabolomics and genomics, focuses on the systematic study of complex interactions in biological systems."

"Ozone induced dissociation, or OzID, first harnesses the power of mass spectrometry to separate one lipid compound out of literally hundreds on the basis of mass, and then uses ozone like a pair of scissors to cut the molecule at a particular position, namely a double bond," says Principal Investigator, Associate Professor Stephen Blanksby from UOW's School of Chemistry.  "This allows an unambiguous assignment of the compound structure and, importantly, differentiates molecules that vary only by the position of their double bonds."

"Learning more about the molecular distribution of lipids in complex biological samples may provide a greater understanding of lipid metabolism, its role in health and disease, and potential ways to prevent or manage diseases," added Dr. Blanksby, who will be presenting results of his work with OzID at the IMSC conference this week.

Ron Bonner, Principal Scientist at AB SCIEX and sponsor of the AB SCIEX Academic Partnership Program, said, "Lipid research is a fast-growing area in need of new breakthroughs to advance the impact that lipidomics can have on biological studies.  We see a great opportunity of applying cutting-edge intellectual property by working with the forward-thinking researchers at the University of Wollongong to take innovative ideas such as OzID from the idea phase to market.  This is the benefit of academics working with industry leaders such as AB SCIEX."

AB SCIEX is partnering with academic researchers, including up-and-coming scientists, to lower the barriers to advancements and breakthroughs in medicine and the advanced study of biology.  The new wave of biological studies known as "network biology" and the -omics fields require advanced scientific techniques and powerful technologies.  The Academic Partnership Program is designed to provide access to technical expertise and support in mass spectrometry and chromatography.

The agreement was facilitated with the assistance of UniQuest Pty Limited, UniQuest Managing Director, David Henderson, said the license agreement highlighted the growing interest from international companies in the work of Australian university researchers addressing global health issues.

"Protecting the intellectual property and securing US patents helped to boost the value of the OzID technology for industry partners like AB SCIEX," Henderson said. "This joint development project is likely to draw more attention to the way Australian lab-based discoveries impact positively on emerging fields of science as well as translate into a better understanding of health and disease."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Using the Linkam THMS600 Temperature Stage to Study Fluid Inclusions
The University of Lyon use the Linkam THMS600 temperature stage for the study of Brillouin spectroscopy of fluid inclusions.
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Making Mechanically Strong Nanotubes With Light
Researchers develop "Helix-to-Tube", a simple strategy to synthesize covalent organic nanotubes.
Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Magnetic Drug Delivery in the Body
Imagine a device that could transport drugs to any diseased site in the body with the help of a small magnet.
Detecting Hazardous Chemicals in Complex Mixtures
Researchers are pioneering a new chemical substance analyis software technique that could increase illicit substance detection.
JPK NanoWizard® Applied to a Wide Range of Research
The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins.
Improving Wheat Crops in the Field
Agrii, RAGT and the University of Nottingham are developing better disease management and yield production in wheat crops using ASD FieldSpec Handheld 2 portable spectroradiometers.
Monitoring Changes, Variability in Blood
Raman spectroscopy used as a tool for monitoring biochemical changes and inter-donor variability in stored red blood cell units.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!