Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

JPK Reports on the Use of AFM and Single-cell Force Spectroscopy at iNANO

Published: Tuesday, December 11, 2012
Last Updated: Tuesday, December 11, 2012
Bookmark and Share
Dr Rikke Meyer is looking into biofilm formation from bacteria using AFM and Spectroscopy.

JPK Instruments reports on the research studies of Dr Rikke Meyer who is looking into biofilm formation from bacteria using atomic force microscopy, AFM, and single-cell force spectroscopy.

The interdisciplinary Nanoscience Center (iNANO) was formed by various research groups at Aarhus University together with groups from the Faculty of Science at Aalborg University.

iNANO comprises facilities for the synthesis of nanostructured and nanopatterned 0D (i.e. nanoparticle), 1D, 2D and 3D materials.

The group of Dr Rikke Meyer works at the interface between microbiology and nanoscience in the quest to understand how bacteria form biofilms and how this may be prevented.

AFM and optical microscopy are used to visualize bacterial cells and to study the interaction forces between cells and an abiotic substrate.

AFM imaging and single-cell force spectroscopy are excellent tools to visualize detailed structures on the bacterial cell surface and to study how these contribute to cell adhesion to other substrates.

The motivation for using AFM in Dr Meyer's research was firstly to obtain detailed images of bacterial cells without extensive sample preparation.

Furthermore, as she is interested in the interactions between bacteria and abiotic surfaces, she and her team use AFM force spectroscopy to quantify these interaction forces.

AFM is one of several techniques used in these studies. These also include brightfield microscopy, fluorescence microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy.

Dr Meyer comments on her research and reasons behind her choice of AFM: "The coupling with optical microscopy is no doubt the feature that was most important for me in deciding to go with an AFM from JPK. As a microbiologist, I work with very heterogenous samples and it is not feasible to use AFM imaging to locate the field of interest, as large areas of the sample are often visualized to locate a site of interest. In the combined system, we can use the optical image to locate cells of interest before engaging the AFM for imaging or other measurements."

Continuing, she said, "AFM has mostly been used to study bacterial cells that are isolated in pure culture. However, the vast majority of the bacterial species we know to date have not been isolated and can only be studied in situ. Fluorescence labeling allows a rough identification of bacteria directly in the sample and fluorescence imaging can thus be used to locate cells of interest before AFM imaging begins. The combination of AFM with optical imaging is thus particularly important for the analysis of bacteria in environmental samples."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Studying the Dynamics of Biomacromolecules
JPK Instruments reports on the study of how force regulates the structures and conformational dynamics of biomacromolecules using AFM-based single molecule force spectroscopy.
Tuesday, March 11, 2014
Scientific News
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
“Golden Window” in Deep Brain Imaging Opened
The neuroscience community is saluting the creation of a “Golden Window” for deep brain imaging by researchers at The City College of New York led by biomedical engineer Lingyan Shi.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Human Dark Proteome Initiative Launched
Group to focus on advancing research on intrinsically disordered proteins to better understand catastrophic diseases.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Studying Bowel Disease With Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos